Skip to main content
Log in

Effect of pyrolysis temperature on properties of ACF/CNT composites

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Activated carbon fiber/carbon nanotube (ACF/CNT) composites were fabricated by chemical vapor deposition (CVD) process. The effects of pyrolysis temperature on properties of ACF/CNT composites, including BET specific surface area, mass increment rate and adsorption efficiency for rhodamine B in solution, were investigated by scanning electron microscopy. The results show that the pyrolysis temperature is a key factor affecting the qualities of ACF/CNT composites. The mass increment rate and BET specific surface area sharply decrease with the increase of pyrolysis temperatures from 550 °C to 850 °C and the minimum diameter of CNTs appears at 750 °C. The maximum adsorption efficiency of ACF/CNT composites for rhodamine B is obtained at 650 °C. ACF/CNT composites are expected to be useful in adsorption field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHIANG Hsiu-mei, CHEN Ting-chien, PAN San-de, CHIANG Hung-lung. Adsorption characteristics of Orange II and Chrysophenine on sludge adsorbent and activated carbon fibers [J]. Journal of Hazardous Materials, 2009, 161(2/3): 1384–1390.

    Google Scholar 

  2. HATTORI Y, NOGUCHI N, OKINO F, TOUHARA H, NAKAHIGASHI Y, UTSUMI S, TANAKA H, KANOH H, KANEKO K. Defluorination-enhanced hydrogen adsorptivity of activated carbon fibers [J]. Carbon, 2007, 45(7): 1391–1395.

    Article  Google Scholar 

  3. XIE Zun-yun, LI Jun-ping, ZHAO Ning, WANG Feng, PENG Wei-cai, MAO Bo-yang, XIAO Fu-kui, WEI Wei, SUN Yu-han. The adsorption of carbon disulfide on activated carbon fibers [J]. Carbon, 2010, 48(1): 315–316.

    Article  Google Scholar 

  4. JUNG M-J, KIM J W, IM J S, PARK S-J, LEE Y-S. Nitrogen and hydrogen adsorption of activated carbon fibers modified by fluorination [J]. Journal of Industrial and Engineering Chemistry, 2009, 15(3): 410–414.

    Article  Google Scholar 

  5. LEE Y S, KIM Y H, HONG J S, SUH J K, CHO G J. The adsorption properties of surface modified activated carbon fibers for hydrogen storages [J]. Catalysis Today, 2007, 120(3/4): 420–425.

    Article  Google Scholar 

  6. LI Bing-zheng, LEI Zhi-ping, ZHANG Xiao-hang, HUANG Zhang-gen. Adsorption of simple aromatics from aqueous solutions on modified activated carbon fibers [J]. Catalysis Today, 2010, 158(3/4): 515–520.

    Article  Google Scholar 

  7. HUANG Hua-cun, YE Dai-qi, HUANG Bi-chun. Nitrogen plasma modification of viscose-based activated carbon fibers [J]. Surface and Coatings Technology, 2007, 201(24): 9533–9540.

    Article  Google Scholar 

  8. ZHAO Jian-guo, LIU Lang, GUO Quan-gui, SHI Jing-li, ZHAI Geng-tai, SONG Jin-ren, LIU Zhan-jun. Growth of carbon nanotubes on the surface of carbon fibers [J]. Carbon, 2008, 46(2): 380–383.

    Article  Google Scholar 

  9. FELDMAN A K, STEIGERWALD M L, GUO X, NUCKOLLS C. Molecular electronic devices based on single-walled carbon nanotube electrodes [J]. Accounts of Chemical Research, 2008, 41(12): 1731–1741.

    Article  Google Scholar 

  10. GANESAN Y, PENG C, LU Y, LOYA P E, MOLONEY P, BARRERA E, YAKOBSON B I, TOUR JM, BALLARINI R, LOU J. Interface toughness of carbon nanotube reinforced epoxy composites [J]. ACS Applied Materials & Interfaces, 2011, 3(2): 129–134.

    Article  Google Scholar 

  11. GETHARD K, SAE-KHOW O, MITRA S. Water desalination using carbon-nanotube-enhanced membrane distillation [J]. ACS Applied Materials & Interfaces, 2010, 3(2): 110–114.

    Article  Google Scholar 

  12. REN L, PINT C L, BOOSHEHRI L G, RICE W D, WANG X, HILTON D J, TAKEYA K, KAWAYAMA I, TONOUCHI M, HAUGE R H, KONO J. Carbon nanotube terahertz polarizer [J]. Nano Letters, 2009, 9(7): 2610–2613.

    Article  Google Scholar 

  13. PAN B, XING B. Adsorption mechanisms of organic chemicals on carbon nanotubes [J]. Environmental Science & Technology, 2008, 42(24): 9005–9013.

    Article  Google Scholar 

  14. MATHUR R B, CHATTERJEE S, SINGH B P. Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties [J]. Composites Science and Technology, 2008, 68(7/8): 1608–1615.

    Article  Google Scholar 

  15. YAN X M, SHI B Y, LU J J, FENG C H, WANG D S, TANG H X. Adsorption and desorption of atrazine on carbon nanotubes [J]. Journal of Colloid and Interface Science, 2008, 321(1): 30–38.

    Article  Google Scholar 

  16. DANAFAR F, FAKHRU’L-RAZI A, SALLEH M A M, BIAK D R A. Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes-A review [J]. Chemical Engineering Journal, 2009, 155(1/2): 37–48.

    Article  Google Scholar 

  17. CHEN Long, LIU Hai-tao, YANG Ke-li, WANG Jian-kang, WANG Xiao-lai. The effect of reaction temperature on the diameter distribution of carbon nanotubes grown from ethylene decomposition over a Co-La-O catalyst [J]. Materials Chemistry and Physics, 2008, 112(2): 407–411.

    Article  Google Scholar 

  18. NIU Zhi-qiang, FANG Yan. Effect of temperature for synthesizing single-walled carbon nanotubes by catalytic chemical vapor deposition over Mo-Co-MgO catalyst [J]. Materials Research Bulletin, 2008, 43(6): 1393–1400.

    Article  Google Scholar 

  19. TAN S M, CHAI S P, LIU W W, MOHAMED A R. Effects of FeOx, CoOx, and NiO catalysts and calcination temperatures on the synthesis of single-walled carbon nanotubes through chemical vapor deposition of methane [J]. Journal of Alloys and Compounds, 2009, 477(1/2): 785–788.

    Article  Google Scholar 

  20. DANG Chun, WANG Ting-zhi. Study on effects of substrate temperature on growth and structure of alignment carbon nanotubes in plasma-enhanced hot filament chemical vapor deposition system [J]. Applied Surface Science, 2006, 253(2): 904–908.

    Article  Google Scholar 

  21. TIBBETTS G G. Why are carbon filaments tubular [J]. Journal of Crystal Growth, 1984, 66(3): 632–638.

    Article  Google Scholar 

  22. SURESHKUMAR M V, NAMASIVAYAM C. Adsorption behavior of Direct Red 12B and Rhodamine B from water onto surfactant-modified coconut coir pith [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317(1/2/3): 277–283.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-ping Wang  (王丽平).

Additional information

Foundation item: Project(50802115) supported by the National Natural Science Foundation of China; Project(2010FJ4075) supported by the Science and Technology Plan of Hunan Province; Project(CDJJ-10010205) supported by Changsha University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Lp., Huang, Zc., Zhang, My. et al. Effect of pyrolysis temperature on properties of ACF/CNT composites. J. Cent. South Univ. 19, 2746–2750 (2012). https://doi.org/10.1007/s11771-012-1336-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-012-1336-3

Key words

Navigation