Skip to main content
Log in

Novel Retinex algorithm by interpolation and adaptive noise suppression

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In order to improve image quality, a novel Retinex algorithm for image enhancement was presented. Different from conventional algorithms, it was based on certain defined points containing the illumination information in the intensity image to estimate the illumination. After locating the points, the whole illumination image was computed by an interpolation technique. When attempting to recover the reflectance image, an adaptive method which can be considered as an optimization problem was employed to suppress noise in dark environments and keep details in other areas. For color images, it was taken in the band of each channel separately. Experimental results demonstrate that the proposed algorithm is superior to the traditional Retinex algorithms in image entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LAND E, MCCANN J. Lightness and Retinex theory [J]. J Opt Soc Amer, 1971, 61(1): 1–11.

    Article  Google Scholar 

  2. PROVENZI E, FIERRO M, RIZZI A, CARLI L D, GADIA D, MARINI D. Random spray Retinex: A new Retinex implementation to investigate the local properties of the model [J]. IEEE Trans Image Process, 2007, 16(1): 162–171.

    Article  MathSciNet  Google Scholar 

  3. MOREL J M, PETRO A, SBERT C. A PDE formalization of Retinex theory [J]. IEEE Trans Image Process, 2010, 19(11): 2825–2837.

    Article  MathSciNet  Google Scholar 

  4. FRANKLE J, MCCANN J. Method and apparatus for lightness imaging: US, 4384336 [P]. 1983-05-17.

  5. FUNT B, CIUREA F, MCCANN J. Retinex in Matlab [J]. Journal of the Electronic Imaging, 2004, 13(1): 48–57.

    Article  Google Scholar 

  6. JOBSON D J, RAHMAN Z, WOODELL G A. A multiscale Retinex for bridging the gap between color images and the human observation of scenes [J]. IEEE Trans on Image Processing, 1997, 6(7): 965–976.

    Article  Google Scholar 

  7. BERTALMIO M, CASELLES V, PROVENZI E. Issues about Retinex theory and contrast enhancement [J]. Int J Comput Vis, 2009, 83(1): 101–119.

    Article  Google Scholar 

  8. BERTALMIO M, COWAN J. Implementing the Retinex algorithm with Wilson-Cowan equations [J]. J Physiol, 2009, 103(1): 69–72.

    Google Scholar 

  9. KIMMEL R, ELAD M, SHAKED A, KESHET R, SOBEL I. A variational framework for Retinex [J]. International Journal of Computer Vision, 2003, 52(1): 7–23.

    Article  MATH  Google Scholar 

  10. ELAD M. Retinex by two bilateral filters [C]// 5th International Conference on Scale-Space and PDE Methods in Computer Vision. Hofgeismar: Springer, 2005: 217–229.

    Chapter  Google Scholar 

  11. XIONG Wei-hua, FUNT B. Stereo Retinex [J]. Image Vis Comput, 2009, 27(1): 178–188.

    Article  Google Scholar 

  12. SUBR K, SOLER C, DURAND F. Edge-preserving multiscale image decomposition based on local extrema [J]. ACM Trans Graph, 2009, 28(5): 1–9.

    Article  Google Scholar 

  13. LEVIN A, LISCHINSKI D, WEISS Y. Colorization using optimization [J]. ACM Trans Graph, 2004, 23(3): 689–694.

    Article  Google Scholar 

  14. SCHECHNER Y Y, KARPEL N. Recovery of underwater visibility and structure by polarization analysis [J]. IEEE J Oceanic Eng, 2005, 30(3): 570–587.

    Article  Google Scholar 

  15. SCHECHNER Y Y, AVERBUCH Y. Regularized image recovery in scattering media [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2007, 29(9): 1655–1660.

    Article  Google Scholar 

  16. KAFTORY R, SCHECHNER Y Y, ZEEVI Y Y. Variational distance-dependent image restoration [C]// Proc IEEE Conf Computer Vision and Pattern Recognition. Minneapolis: IEEE, 2007: 1–8.

    Google Scholar 

  17. FARBMAN Z, FATTAL R, LISCHINSKI D, SZELISKI R. Edge-preserving decompositions for multi-scale tone and detail manipulation [J]. ACM Trans Graph, 2008, 27(3): 1–10.

    Article  Google Scholar 

  18. LISCHINSKI D, FARBMAN Z, UYTTENDELE M, SZELISKI R. Interactive local adjustment of tonal values [J]. ACM Trans Graph, 2006, 25(3): 646–653.

    Article  Google Scholar 

  19. GHIMIRE D, LEE J. Nonlinear transfer function-based local approach for color image enhancement [J]. Consumer Electronics, IEEE Transactions on, 2011, 57(2): 858–865.

    Article  Google Scholar 

  20. LI Ming. A fast algorithm for color image enhancement with total variation regularization [J]. Science China-Information Science, 2010, 53(9): 1913–1916.

    Article  Google Scholar 

  21. FERRADANS S, BERTALMIO M, PROVENZI E, CASELLES V. An analysis of visual adaptation and contrast perception for tone mapping [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2011, 33(10): 2002–2012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu-jing Li  (李武劲).

Additional information

Foundation item: Project(61071162) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Wj., Gu, B., Huang, Jt. et al. Novel Retinex algorithm by interpolation and adaptive noise suppression. J. Cent. South Univ. 19, 2541–2547 (2012). https://doi.org/10.1007/s11771-012-1308-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-012-1308-7

Key words

Navigation