Skip to main content
Log in

Linear and nonlinear control of a robotic excavator

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Various control systems for a robotic excavator named LUCIE (Lancaster University Computerized and Intelligent Excavator), were investigated. The excavator is being developed to dig trenches autonomously. One stumbling block is the achievement of adequate, accurate, quick and smooth movement under automatic control. Here, both classical and modern approaches are considered, including proportional-integral-derivative (PID) control tuned by conventional Zigler-Nichols rules, linear proportional-integral-plus (PIP) control, and a novel nonlinear PIP controller based on a state-dependent parameter (SDP) model structure, in which the parameters are functionally dependent on other variables in the system. Implementation results for the excavator joint arms control demonstrate that SDP-PIP controller provides the improved performance with fast, smooth and accurate response in comparison with both PID and linearized PIP control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MERRITT E. Hydraulic control systems [M]. New York: John Wiley, 1976.

    Google Scholar 

  2. CHIANG M H, MURRENHOFF H. Adaptive servo-control for hydraulic excavators [C]// Power Transmission and Motion Control [PTMC’ 98]. UK: Professional Engineering Publishing Limited London and Bury St Edmunds, 1998: 81–95.

    Google Scholar 

  3. HA Q, NGUYEN Q, RYE D, DURRANT-WHYTE H. Impedance control of a hydraulic actuated robotic excavator [J]. Journal of Automation in Construction, 2000, 9(5/6): 421–435.

    Article  Google Scholar 

  4. BUDNY E, CHLOSTA M, GUTKOWSKI W. Load-independent control of a hydraulic excavator [J]. Journal of Automation in Construction, 2003, 12(3): 245–254.

    Article  Google Scholar 

  5. GU J, TAYLOR C J, SEWARD D. Proportional-integral-plus control of an intelligent excavator [J]. Journal of Computer-Aided Civil and Infrastructure Engineering, 2004 19(1): 16–27.

    Article  Google Scholar 

  6. TAYLOR C J, SHABAN E M, STABLES, M A, AKO S. Proportional-integral-plus control applications of state-dependent parameter models [J]. IMECHE Proceedings Journal of Systems and Control Engineering, 2007, 221(17): 1019–1032.

    Google Scholar 

  7. GU J, SEWARD D. Digital servo control of a robotic excavator [J]. Chinese Journal of Mechanical Engineering, 2009, 22(2): 190–197.

    Article  Google Scholar 

  8. GU J, SEWARD D. Improved control of an intelligent excavator using proportional-integral-plus (pip) gain scheduling [J]. Journal of Central South University of Technology, 2012, 19(2): 384–392.

    Article  Google Scholar 

  9. BRADLEY D A, SEWARD D W. The development, control and operation of an autonomous robotic excavator [J]. Journal of Intelligent and Robotic Systems, 1998, 21(1): 73–97.

    Article  Google Scholar 

  10. YOUNG P C, BEHZADI M A, WANG C L, CHOTAI A. Direct digital and adaptive control by input-output, state variable feedback pole assignment [J]. International Journal of Control, 1987, 46(6): 1861–1881.

    Article  MathSciNet  Google Scholar 

  11. TAYLOR C J, CHOTAI A, YOUNG P C. State space control system design based on non-minimal state-variable feedback: Further generalisation and unification results [J]. International Journal of Control, 2000, 73(14): 1329–1345.

    Article  MathSciNet  MATH  Google Scholar 

  12. YOUNG P C. FITZGERALD W J, ed. Stochastic, dynamic modelling and signal processing: Time variable and state dependent parameter estimation’s nonlinear and nonstationary signal processing [M]. Cambridge: Cambridge University Press, 2000.

    Google Scholar 

  13. SEWARD D W, PACE C and AGATE R. Safe and effective navigation of autonomous robots in hazardous environments [J]. Autonomous Robots, 2007, 22(3): 223–242.

    Article  Google Scholar 

  14. FRANKLIN G F, POWELL J D, EMAMI-NAEINI A. Feedback control of dynamic systems, 3rd ed [M]. Reading, MA: Addison Wesley, 1994.

    Google Scholar 

  15. CHOTAI A, YOUNG P C, BEHZADI M A. Self-adaptive design of a nonlinear temperature control system [J]. Special Issue on Self-tuning Control, IEE proceedings, Part D, 1991, 38: 41–49.

    Google Scholar 

  16. TAYLOR C J. Generalized proportional-integral-plus (PIP) control [D]. Lancaster: Lancaster University, 1996.

    Google Scholar 

  17. TAYLOR C J, CHOTAI A, YOUNG P C. Nonlinear control by input-output state variable feedback pole assignment [J]. International Journal of Control, 2009, 82(6): 1029–1044.

    Article  MathSciNet  MATH  Google Scholar 

  18. EXADAKTYLOS V, TAYLOR C J, WANG L, YOUNG P C. Forward path model predictive control using a non-minimal state space form [J]. IMECHE Proceedings Journal of Systems and Control, 2009, 223(3): 353–369.

    Google Scholar 

  19. WANG L, GAWTHROP P, YOUNG P C, TAYLOR C J. Non-minimal state space model-based continuous-time model predictive control with constraints [J]. International Journal of Control, 2009, 82(6): 1122–1137.

    Article  MathSciNet  MATH  Google Scholar 

  20. SHABAN E M, AKO S, TAYLOR C J, SEWARD D W. Development of an automated verticality alignment system for a vibro-lance [J]. Automation in Construction, 2008, 17(5): 645–655.

    Article  Google Scholar 

  21. TAYLOR C J, PEDREGAL D J, YOUNG P C, TYCH W. Environmental time series analysis and forecasting with the captain toolbox [J]. Environmental Modelling and Software, 2007, 22(6): 797–814.

    Article  Google Scholar 

  22. STABLES M A, TAYLOR C J. Nonlinear control of ventilation rate using state dependent parameter models [J]. Biosystems Engineering, 2006, 95(1): 7–18.

    Article  Google Scholar 

  23. McCABE A P, YOUNG P C, CHOTAI A, TAYLOR C J. Proportional-Integral-Plus (PIP) control of non-linear systems [J]. Systems Science, 2000, 26(1): 25–46.

    MathSciNet  MATH  Google Scholar 

  24. BURNHAM K J, DUNOYER A, MACROFT S. Bilinear controller with PID structure [J]. IEEE Computing and Control. Engineering Journal, 1999, 10(2): 63–69.

    Article  Google Scholar 

  25. ZIEMIAN S J. Bilinear proportional-integral-plus control [D]. Coventry University, UK, 2002.

    Google Scholar 

  26. GU J, TAYLOR C J, SEWARD D. Modelling of an hydraulic excavator using simplified refined instrumental variable (SRIV) algorithm [J]. Journal of Control Theory and Applications, 2007, 5(4): 391–396.

    Article  Google Scholar 

  27. TAYLOR C J, CHOTAI A, YOUNG P C. Proportional-Integral-Plus (PIP) control of time delay systems [J]. Proceedings of the Institute of Mechanical Engineering, Journal of Systems and Control Engineering, 1998, 212(1): 37–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Gu  (顾军).

Additional information

Foundation item: Work supported by the Lancaster University, UK and Jiangsu Provincial Laboratory of Advanced Robotics, SooChow University, China; Project(BK2009509) supported by the Natural Science Foundation of Jiangsu Province, China; Project(K5117827) supported by the Scientific Research Foundation for the Returned Scholars, Ministry of Education of China; Project(Q3117918) supported by the Scientific Research Foundation for Young Teachers of Soochow University, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, J., Ma, Xd., Ni, Jf. et al. Linear and nonlinear control of a robotic excavator. J. Cent. South Univ. 19, 1823–1831 (2012). https://doi.org/10.1007/s11771-012-1215-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-012-1215-y

Key words

Navigation