Skip to main content
Log in

Improvement of chromium biosorption through protoplast electrofusion between Candida tropicalis and Candida lipolytica

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Protoplasts from Candida tropicalis and Candida lipolytica were fused under an optimized electrofusion (electrical pulse strength 6 kV/cm, pulse duration time 40 μs and pulse times 5) and then regenerated on YEPD media for achieving new genotypes with higher chromium loading capacity. A target fusant RHJ-004 was screened out by its chromium resistance and chromium-sorbing capacity tests for further research. The comparative study of applicability shows that the fusant has better performance than its parent strains in respect of solution pH, biomass concentration and chromium loading capacity. Especially for treating low concentration Cr(VI) (≤20 mg/L), above 80% chromium is sequestered from the aqueous phase at pH 1–9. Atomic force microscopy (AFM) visualizes the distribution of chromium on the binding sites of the cells, suggesting that the altered surface structure and intracellular constitutes of the fusant associate with its increased biosorption capacity. The rapid biosorption processes of chromium follow the Langmuir model well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AKAR A, CELIK S, AKAR S T. Biosorption performance of surface modified biomass obtained from Pyracantha coccinea for the decolorization of dye contaminated solutions [J]. Chemical Engineering Journal, 2010, 160(2): 466–472.

    Article  Google Scholar 

  2. KUMAR R, SINGH R, KUMAR N, BISHNOI K, BISHNOI N R. Response surface methodology approach for optimization of biosorption process for removal of Cr(VI), Ni(II) and Zn(II) ions by immobilized bacterial biomass sp. Bacillus brevis [J]. Chemical of Engineering Journal, 2009, 146(3): 401–407.

    Article  Google Scholar 

  3. SHENG Li, XIA Jin-lian, HE Huan, NIE Zhen-yuan, QIU Guan-zhou. Biosorption mechanism of Cr(VI) onto cells of synechococcus sp. [J]. Journal of Central South University of Technology, 2007, 14(2): 157–162.

    Article  Google Scholar 

  4. ZENG Xiao-xi, TANG Jian-xin, LIU Xue-duan, JIANG Pei. Isolation, identification and characterization of cadmium-resistant pseudomonas aeruginosa stains E1 [J]. Journal of Central South University of Technology, 2009, 16(3): 416–421.

    Article  Google Scholar 

  5. SARI A, ULUOZLÜ Ö D, TÜZEM M. Equilibrium, thermodynamic and kinetic investigations on biosorption of arsenic from aqueous solution by algae (Maugeotia genuflexa) biomass [J]. Chemical Engineering Journal, 2011, 167(1): 155–161.

    Article  Google Scholar 

  6. TERPITZ U, RAIMUNDA D, WESTHOFF M, SUKHORUKOV V L, BEAUGË L, BAMBERG E, ZIMMERMANN D. Electrofused giant protoplasts of Saccharomyces cerevisiae as a novel system for electrophysiological studies on membrane proteins [J]. Biochimica et Biophysica. Acta (BBA)-Biomembranes, 2008, 1778(6): 1493–1500.

    Article  Google Scholar 

  7. AKAR T, KAYNAK Z, ULUSOY S, YUVACI D, OZSARI G, AKAR S T. Enhanced biosorption of nickel(II) ions by silica-gelimmoblized waste biomass: Biosorption characteristics in batch and dynamic flow mode [J]. Journal of Hazardous Materials, 2009, 163(2/3): 1134–1141.

    Article  Google Scholar 

  8. ARANDA-gARCÍA E, NETZAHUATL-MUÑOZ A R, CRISTIANI-URBINA M D C, MORALES-BARRERA L, PINEDA-AMACHO G, CRISTIANI-URBINA E. Bioreduction of Cr(VI) and chromium biosorption by acorn shell of Quercus crassipes humb. & bonpl [J]. Journal of Biotechnology, 2010, 150(Supplement 1): p 228.

    Article  Google Scholar 

  9. SUN Xue-fei, LIU Chuang-yong, MA Yue, WANG Shu-gang, GAO Bao-yu, LI Xiao-ming. Enhanced Cu(II) and Cr(VI) biosorption capacity on poly(ethylenimine) grafted aerobic granular sludge [J]. Colloids and Surfaces B: Biointerfaces, 2011, 82(2): 456–462.

    Article  Google Scholar 

  10. SINGHA B, DAS S K. Biosorption of Cr(VI) ions from aqueous solutions: Kinetics, equilibrium, thermodynamics and desorption studies [J]. Colloids and Surfaces B: Biointerfaces, 2011, 84(1): 221–232.

    Article  Google Scholar 

  11. TRONTELJ K, REBERSEK M, KANDUSER M, SERBEC V C. Optimization of bulk cell electrofusion in vitro for production of human-mouse heterophybridoma cells [J]. Bioelectrochemistry, 2008, 74(1): 124–129.

    Article  Google Scholar 

  12. ANAYURT R A, SARI A, TUZEN M. Equilibrium, thermodynamic and kinetic studies on biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Lactarius scrobiculatus) biomass [J]. Chemical Engineering Journal, 2009, 151(1/2/3): 255–261.

    Article  Google Scholar 

  13. WANG Xue-song, TANG Ye-ping, TAO Sheng-rong. Kinetics, equilibrium and thermodynamic study on removal of Cr(VI) from aqueous solutions using low-cost adsorbent alligator weed [J]. Chemical Engineering Journal, 2009, 148(2/3): 217–225.

    Article  Google Scholar 

  14. YIN Hua, HE Bao-yan, LU Xian-yan, PENG Hui, YE Jin-shao, YANG Feng. Imporvement of chromium biosorption by UV-HNO2 cooperative mutagenesis in Candida utilis [J]. Water Research, 2008, 42(14): 3981–3989.

    Article  Google Scholar 

  15. BLÁZQUEZ G, HERNÁINZ F, CALERO M, MARTÍN-LARA M A, TENORIO G. The effect of pH on the biosorption of Cr(III) and Cr(VI) with olive stone [J]. Chemical Engineering Journal, 2009, 148(2/3): 473–470.

    Article  Google Scholar 

  16. PARK D, YUN Y S, PARK J M. Mechanisms of the removal of hexavalent chromium by biomaterials or biomaterial-based activated carbons [J]. Journal of Hazardous Materials, 2006, 137(2): 1254–1257.

    Article  Google Scholar 

  17. LI Jian-ping, LIN Qing-yu, ZHANG Xue-hong, YAN Y. Kinetic parameters and mechanisms of the batch biosorption of Cr(VI) and Cr(III) onto Leersia hexandra Swartz biomass [J]. Journal of Colloid and Interface Science, 2009, 333(1): 71–77.

    Article  Google Scholar 

  18. GAO Hui, LIU Yun-guo, ZENG Guang-ming, XU Wei-hua, LI Ting, XIA Wen-bin. Characterization of Cr(VI) removal from aqueous solutions by a surplus agricultural waste-Rice straw [J]. Journal of Hazardous Materials, 2008, 150(2): 446–452.

    Article  Google Scholar 

  19. JÁCOME-PILCO C R, CRISTIANI-URBINA E, FLORES-COTERA L B, VELASCO-GARCÍA R, PONCE-NOYOLA T, CAÑIZARES-VILLANUEVA R O. Continuous Cr(VI) removal by Scenedesmus incrassatulus in an airlift photobioreactor [J]. Bioresource Technology, 2009, 100(8): 2388–2391.

    Article  Google Scholar 

  20. ERTUGAY N, BAYHAN Y K. Biosorption of Cr(VI) from aqueous solutions by biomass of Agaricus bisporus [J]. Journal of Hazardous Materials, 2008, 154(1/2/3): 432–439.

    Article  Google Scholar 

  21. COMTE S, GUIBAUD G, BAUDU M. Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values [J]. Journal of Hazardous Materials, 2008, 151(1): 185–193.

    Article  Google Scholar 

  22. AMINI A, YOUNESI H, BAHRAMIFAR N. Statistical modeling and optimization of the cadmium biosorption process in an aqueous solution using Aspergillus niger [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 337(1/2/3): 67–73.

    Article  Google Scholar 

  23. GUPTA S, KUMAR D, GAUR J P. Kinetic and isotherm modeling of lead(II) sorption onto some waste plant materials [J]. Chemical Engineering Journal, 2009, 148(2/3): 226–233.

    Article  Google Scholar 

  24. NUHOGLU Y, MALKOC E. Thermodynamic and kinetic studies for environmentaly friendly Ni(II) biosorption using waste pomace of olive oil factory [J]. Bioresource Technology, 2009, 100(8): 2357–2380.

    Article  Google Scholar 

  25. WON S W, YUN H J, YUN Y S. Effect of pH on the binding mechanisms in biosorption of Reactive Orange 16 by Corynebacterium glutamicum [J]. Journal of Colloid and Interface Science, 2009, 331(1): 83–89.

    Article  Google Scholar 

  26. BHATTI H N, KHALID R, HANIF M A. Dynamic biosorption of Zn(II) and Cu(II) using pretreated Rosa gruss an teplitz (red rose) distillation sludge [J]. Chemical Engineering Journal, 2009, 148(2/3): 434–443.

    Article  Google Scholar 

  27. FEBRIANTO J, KOSASIH A N, SUNARSO J, JU Y H. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies [J]. Journal of Hazardous Materials, 2009, 162(2/3): 616–645.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Yin  (尹华).

Additional information

Foundation item: Project(NSFC-GDNSF U0933002) supported by the Joint Funds of the National Natural Science Foundation of China and the Natural Science Foundation of Guangdong Province, China; Project(50978122) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, By., Yin, H., Yang, F. et al. Improvement of chromium biosorption through protoplast electrofusion between Candida tropicalis and Candida lipolytica . J. Cent. South Univ. Technol. 19, 1693–1701 (2012). https://doi.org/10.1007/s11771-012-1195-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-012-1195-y

Key words

Navigation