Skip to main content
Log in

Multiple linear system techniques for 3D finite element method modeling of direct current resistivity

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and stored in two parts separately. One part is associated with the volume integral and the other is associated with the subsurface boundary integral. The equivalent multiple linear systems with closer right-hand sides than the original systems were constructed. A recycling Krylov subspace technique was employed to solve the multiple linear systems. The solution of the seed system was used as an initial guess for the subsequent systems. The results of two numerical experiments show that the improved algorithm reduces the iterations and CPU time by almost 50%, compared with the classical preconditioned conjugate gradient method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DEY A, MORRISON H F. Resistivity modeling for arbitrarily shaped three-dimensional structures [J]. Geophysics, 1979, 44(4): 753–780.

    Google Scholar 

  2. LI Y, SPITZER K. Three-dimensional DC resistivity forward modeling using finite elements in comparison with finite-difference solutions [J]. Geophys J Int, 2002, 151(3): 924–934.

    Article  Google Scholar 

  3. RUAN B Y, XIONG B, XU S Z. Finite element method for modeling resistivity sounding 3-D geo-electric section [J]. Earth Science-Journal of China University of Geosciences, 2001, 26(1): 73–77.

    Google Scholar 

  4. TANG J T, REN Z R, HUA X R. Triangle and tetrahedral finite element meshing from arbitrary geophysical model data [J]. Progress in Geophysics, 2006, 21(4): 1272–1280. (in Chinese)

    Google Scholar 

  5. WU X P, WANG T T. A 3D finite element resistivity forward modeling using conjugate gradient algorithm [J]. Chinese Journal of Geophysics, 2003, 46(3): 428–432. (in Chinese)

    Google Scholar 

  6. XU S Z. The finite element method in geophysics [M]. Beijing: Science Press, 1994: 173–183. (in Chinese)

    Google Scholar 

  7. RÜCKER C, GÜNTHER T, SPITZER K. Three-dimensional modeling and inversion of dc resistivity data incorporating topography: I. Modeling [J]. Geophys J Int, 2006, 166(2): 495–505.

    Article  Google Scholar 

  8. BLOME M, MAURER H R, SCHMIDT K. Advances in three-dimensional geoelectric forward solver techniques [J]. Geophys J Int, 2009, 176(3): 740–752.

    Article  Google Scholar 

  9. SAAD Y. Iterative methods for sparse linear systems [M]. 2nd Edition. Society for Industrial and Applied Mathematics, 2003.

  10. ÓLEARY D P. The block conjugate gradient algorithm and related methods [J]. Linear Algebra Appl, 1980, 29: 293–322.

    Article  MathSciNet  Google Scholar 

  11. FREUND R W, MALHOTRA M. A block QMR algorithm for non-Hermitian linear systems with multiple right-hand sides [J]. Linear Algebra Appl, 1997, 254(1): 119–157.

    Article  MathSciNet  MATH  Google Scholar 

  12. MORGAN R B. Restarted block-GMRES with deflation of eigenvalues [J]. Appl Numer Math, 2005, 54(2): 222–236.

    Article  MathSciNet  MATH  Google Scholar 

  13. PARKS M L, de STURLER E, MACKEY G, et al. Recycling Krylov subspaces for sequences of linear systems [J]. SIAM Journal on Scientific Computing, 2006, 28(5): 1651–1674.

    Article  MathSciNet  MATH  Google Scholar 

  14. GIRAUD L, RUIZ D, TOUHAMI A. A comparative study of iterative solvers exploiting spectral information for SPD systems [J]. SIAM Journal on Scientific Computing, 2006, 27(5): 1760–1786.

    Article  MathSciNet  MATH  Google Scholar 

  15. SALKUYEH D K. CG-type algorithms to solve symmetric matrix equations [J]. Applied Mathematics and Computation, 2006, 172(2): 985–999.

    Article  MathSciNet  MATH  Google Scholar 

  16. GOLUB G H, RUIZ D, TOUHAMI A. A hybrid approach combining Chebyshev filter and conjugate gradient for solving linear systems with multiple right-hand sides [J]. SIAM J Matrix Anal Appl, 2007, 29(3): 774–795.

    Article  MathSciNet  MATH  Google Scholar 

  17. CHAN T F, NG M K. Galerkin projection methods solving multiple linear systems [J]. SIAM Journal on Scientific Computing, 1999, 21(3): 836–850.

    Article  MathSciNet  MATH  Google Scholar 

  18. ERHEL J, GUYOMARĆH F. An augmented conjugate gradient method for solving consecutive symmetric positive definite linear systems [J]. SIAM J Matrix Anal Appl, 2000, 21(4): 1279–1299.

    Article  MathSciNet  MATH  Google Scholar 

  19. WANG S, DE STURLER E, PAULINO G H. Large-scale topology optimization using preconditioned Krylov subspace methods with recycling [J]. Int J Numer Meth Engng, 2007, 69(12): 2441–2468.

    Article  MATH  Google Scholar 

  20. JIN C, CAI X C. A preconditioned recycling GMRES solver for Stochastic Helmholtz problems [J]. Commun Comput Phys, 2009, 6(2): 342–353.

    Article  MathSciNet  Google Scholar 

  21. CLEMENS M, HELIAS M, STEINMETZ T, WIMMER G. Multiple right-hand side techniques for the numerical simulation of quasistatic electric and magnetic fields [J]. Journal of Computational and Applied Mathematics, 2008, 215(2): 328–338.

    Article  MathSciNet  MATH  Google Scholar 

  22. MELLO L A M, de STURLER E, PAULINO G H, SILVA E C. Recycling Krylov subspaces for efficient large-scale electrical impedance tomography [J]. Comput Methods Appl Mech Engrg, 2010, 199(49): 3101–3110.

    Article  MathSciNet  MATH  Google Scholar 

  23. KILMER M E, de STURLER E. Recycling subspace information for diffuse optical tomography [J]. SIAM Journal on Scientific Computing, 2006, 27(6): 2140–2166.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Xiong  (熊彬).

Additional information

Foundation item: Projects(40974077, 41164004) supported by the National Natural Science Foundation of China; Project(2007AA06Z134) supported by the National High Technology Research and Development Program of China; Projects(2011GXNSFA018003, 0832263) supported by the Natural Science Foundation of Guangxi Province, China; Project supported by Program for Excellent Talents in Guangxi Higher Education Institution, China; Project supported by the Foundation of Guilin University of Technology, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Cw., Xiong, B., Qiang, Jk. et al. Multiple linear system techniques for 3D finite element method modeling of direct current resistivity. J. Cent. South Univ. Technol. 19, 424–432 (2012). https://doi.org/10.1007/s11771-012-1021-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-012-1021-6

Key words

Navigation