Skip to main content
Log in

Dynamic thermal management by greedy scheduling algorithm

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Chip multiprocessors (CMPs) allow thread level parallelism, thus increasing performance. However, this comes with the cost of temperature problem. CMPs require more power, creating non uniform power map and hotspots. Aiming at this problem, a thread scheduling algorithm, the greedy scheduling algorithm, was proposed to reduce the thermal emergencies and to improve the throughput. The greedy scheduling algorithm was implemented in the Linux kernel on Intel’s Quad-Core system. The experimental results show that the greedy scheduling algorithm can reduce 9.6%–78.5% of the hardware dynamic thermal management (DTM) in various combinations of workloads, and has an average of 5.2% and up to 9.7% throughput higher than the Linux standard scheduler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SKADRON K, STAN M R, HUANG W, VELUSAMY S, SANKARANARAYANAN K, TARJAN D. Temperature-aware microarchitecture [C]// ISCA’03: The thirtieth International Symposium on Computer Architecture. New York: ACM, 2003: 2–13.

    Chapter  Google Scholar 

  2. BROOKS D, MARTONOSI M. Dynamic thermal management for high-performance microprocessors [C]// HPCA’01: Proceedings of the Seventh International Symposium on High-Performance Computer Architecture. Nuevo Leone, Mexico: IEEE Computer Society, 2001: 0171.

    Chapter  Google Scholar 

  3. Intel pentium 4 processor in the 478-pin package thermal design guidelines [R]. Intel Document, 2002: 48.

  4. GUNTHER S, BINNS F, CARMEAN D M, HALL J C. Managing the impact of increasing microprocessor power consumption [J]. Intel Technology Journal, 2001, 5(1): 1–9.

    Google Scholar 

  5. HEO S, BARR K, ASANOVIĆ K. Reducing power density through activity migration [C]// ISLPED’03: The International Symposium on Low Power Electronics and Design. New York: ACM, 2003: 217–222.

    Google Scholar 

  6. SKADRON K. Hybrid architectural dynamic thermal management [R]. Automation and Test in Europe Conference and Exhibition, 2004: 10010.

  7. HANSON H, KECKLER S W, GHIASI S, RAJAMANI K, RAWSON F, RUBIO J. Thermal response to DVFS: Analysis with an intel pentium M [C]// ISLPED’07: The International Symposium on Low Power Electronics and Design. New York: ACM, 2007: 219–224.

    Google Scholar 

  8. YAO C, SALUJA K K, RAMANATHAN P. Thermal-aware test scheduling using on-chip temperature sensors [C]// 24th International Conference on VLSI Design. Madras, Chennai India: IEEE, 2011: 376–381.

    Google Scholar 

  9. ZHAO J, DATTA B, BURLESON W, TESSIER R. Thermal-aware voltage droop compensation for multi-core architectures [C]// Proceedings of the 20th Symposium on Great Lakes on VLSI. New York: ACM, 2010: 335–340.

    Google Scholar 

  10. SRINIVASAN J, ADVE S V. Predictive dynamic thermal management for multimedia applications [C]// Proceedings of the 17th annual international conference on Supercomputing. San Francisco: ACM, 2003: 109–120.

    Chapter  Google Scholar 

  11. CHOI J, CHER C Y, FRANKE H, HAMANN H, WEGER A, BOSE P. Thermal-aware task scheduling at the system software level [C]// ISLPED’07. The International Symposium on Low Power Electronics and Design. New York: ACM, 2007: 213–218.

    Google Scholar 

  12. DONALD J, MARTONOSI M. Techniques for multicore thermal management: Classification and new exploration [C]// ISCA’06: 33rd International Symposium on Computer Architecture. Boston, Massachusetts: IEEE, 2006: 78–88.

    Chapter  Google Scholar 

  13. KUMAR A, SHANG L, PEH L S, JHA N K. HybDTM: A coordinated hardware-software approach for dynamic thermal management [C]// DAC’06: Design Automation Conference. New York: ACM, 2006: 548–553.

    Google Scholar 

  14. DENG L, DOU Y. Multi-core optimization for conjugate gradient benchmark on heterogeneous processors [J]. Journal of Central South University of Technology, 2011, 18(2): 170–179.

    Article  Google Scholar 

  15. KURSUN E, CHER C Y, BUYUKTOSUNOGLU A, BOSE P. Investigating the effects of task scheduling on thermal behavior [C]// TACS’ 06: Workshop on TACS. Citeseer, 2006: 63–72.

  16. GOMAA M, POWELL M D, VIJAYKUMAR T N. Heat-and-run: leveraging SMT and CMP to manage power density through the operating system [C]// ASPLOS-XI. New York: ACM, 2004: 260–270.

    Chapter  Google Scholar 

  17. YANG J, ZHOU X, CHROBAK M, ZHANG Y, JIN L. Dynamic thermal management through task scheduling [C]// ISPASS’08: IEEE International Symposium on Performance Analysis of Systems and Software. Washington: IEEE, 2008: 191–201.

    Chapter  Google Scholar 

  18. ABBASI Z, VARSAMOPOULOS G, GUPTA S K S. Thermal aware server provisioning and workload distribution for internet data centers [C]// Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing. Chicago, Illinois, 2010: 130–141.

  19. ZHOU X, YANG J, XU Y, ZHANG Y, ZHAO J. Thermal-aware task scheduling for 3D multicore processors [J]. IEEE Transactions on Parallel and Distributed Systems, 2010, 21(1): 60–71.

    Article  Google Scholar 

  20. CHAO C H, JHENG K Y, WANG H Y, WU J C, WU A Y. Traffic-and thermal-aware run-time thermal management scheme for 3D NoC systems [C]// Preceedings of the Fourth ACM/IEEE International Symposium on Networks-on-Chip. Grenoble, France: IEEE, 2010: 223–230.

    Chapter  Google Scholar 

  21. CUI J, MASKELL D L. High level event driven thermal estimation for thermal aware task allocation and scheduling [C]// Proceedings of the 2010 Asia and South Pacific Design Automation Conference. Taipei, Taiwan, 2010: 793–798.

  22. FISHER N, CHEN J J, WANG S, THIELE L. Thermal-aware global real-time scheduling and analysis on multicore systems [J]. Journal of Systems Architecture, 2010, 57(5): 547–560.

    Article  Google Scholar 

  23. WANG S, BETTATI R. Reactive speed control in temperature-constrained real-time systems [J]. Real-Time Systems, 2008, 39(1): 73–95.

    Article  MATH  Google Scholar 

  24. MULAS F, PITTAU M, BUTTU M, CARTA S, ACQUAVIVA A, BENINI L, ATIENZA D, MICHELI G D. Thermal balancing policy for streaming computing on multiprocessor architectures [C]// DATE’08: Design, Automation and Test in Europe. Munich, Germany: IEEE, 2008: 734–739.

    Chapter  Google Scholar 

  25. YEO I, KIM E J. Temperature-aware scheduler based on thermal behavior grouping in multicore systems [C]// DATE’09: Proceedings of the Conference on Design, Automation and Test in Europe. Leuven, Belgium: European Design and Automation Association, 2009: 946–951.

  26. CHROBAK M, D RR C, HURAND M, ROBERT J. Algorithms for temperature-aware task scheduling in microprocessor systems, [J]. Algorithmic Aspects in Information and Management, 2008(5034): 120–130.

  27. BOVET D, CESATI M. Understanding the Linux kernel [M]. Sebastopol: O’Reilly & Associates, Inc, 2002: 136–150.

    Google Scholar 

  28. LI L, ZHOU X, YANG J. ThresHot: An aggressive task scheduling approach in CMP thermal design [J]. Algorithmic Aspects in Information and Management, 2008, 5034: 92–99.

    Google Scholar 

  29. YEO I, LIU C C, KIM E J. Predictive dynamic thermal management for multicore systems [C]// Anaheim: ACM, 2008: 734–739.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang-xi Qu  (屈双喜).

Additional information

Foundation item: Projects(2009AA01Z124, 2009AA01Z102) supported by the National High Technology Research and Development Program of China; Projects(60970036, 61076025) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, Sx., Zhang, Mx., Liu, Gh. et al. Dynamic thermal management by greedy scheduling algorithm. J. Cent. South Univ. Technol. 19, 193–199 (2012). https://doi.org/10.1007/s11771-012-0991-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-012-0991-8

Key words

Navigation