Skip to main content
Log in

Laccase biosensor using magnetic multiwalled carbon nanotubes and chitosan/silica hybrid membrane modified magnetic carbon paste electrode

  • Published:
Journal of Central South University of Technology Aims and scope Submit manuscript

Abstract

A simple and rapid strategy to construct laccase biosensor for determination of catechol was investigated. Magnetic multiwalled carbon nanotubes (MMCNT) which possess excellent capability of electron transfer were prepared by chemical coprecipitation method. Scanning electron microscope (SEM) and vibrating sample magnetometer (VSM) were used to identify its surfacetopography and magnetization, respectively. Laccase was immobilized on the MMCNT modified magnetic carbon paste electrode by the aid of chitosan/silica (CS) hybrid membrane. Using current-time detection method, the biosensor shows a linear response related to the concentration of catechol in the range from 10−7 to 0.165×10−3 mol/L. The corresponding detection limit is 3.34×10−8 mol/L based on signal-to-noise ratios (S/N) ≥3 under the optimized conditions. In addition, its response current retains 90% of the original after being stored for 45 d. The results indicate that this proposed strategy can be expected to develop other enzyme-based biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. VARSAMIS D G, TOULOUPAKIS E, MORLACCHI P, GHANOTAKIS D F, GIARDI M T, CULLEN D C. Development of a photosystem II-based optical microfluidic sensor for herbicide detection [J]. Talanta, 2008, 77(1): 42–47.

    Article  Google Scholar 

  2. TANG Lin, ZENG Guang-ming, SHEN Guo-li, LI Yuan-ping, LIU Can, LI Zhen. Sensitive detection of lip genes by electrochemical DNA sensor and its application in polymerase chain reaction amplicons from phanerochaete chrysosporium [J]. Biosensor and Bioelectronics, 2009, 24(5): 1474–1479.

    Article  Google Scholar 

  3. WANG S G, QING Zhan-ga, WANG Rui-li, YOON S F. A novel multi-walled carbon nanotube-based biosensor for glucose detection [J]. Biochemical and Biophysical Research Communications, 2003, 311(3): 572–576.

    Article  Google Scholar 

  4. TANG Lin, ZENG Guang-ming, SHEN Guo-li, LI Yuan-ping, ZHANG Yi, HUANG Dan-lian. Rapid detection of picloram in agricultural field samples using a disposable immunomembranebased electrochemical sensor [J]. Environmental Science and Technology, 2008, 42(4): 1207–1212.

    Article  Google Scholar 

  5. TKAC J, NAVRATIL M, STURDIK E, GEMEINER P. Monitoring of dihydroxyacetone production during oxidation of glycerol by immobilized Gluconobacter oxydans cells with an enzyme biosensor [J]. Enzyme and Microbial Technology, 2001, 28(4/5): 383–388.

    Article  Google Scholar 

  6. CRESPILHO F N, GHICA M E, CARIDADE C G, OLIVEIRA O N J, BRETT C M A. Enzyme immobilization on electroactive nanostructured membranes (ENM): Optimised architectures for biosensing [J]. Talanta, 2008, 76(4): 922–928.

    Article  Google Scholar 

  7. FREIRE R S, DURAN N, KUBOTA L T. Effects of fungal laccase immobilization procedures for the development of a biosensor for phenol compounds [J]. Talanta, 2001, 54(4): 681–686.

    Article  Google Scholar 

  8. FU Guang-lei, YUE Xiu-li, DAI Zhi-fei. Glucose biosensor based on covalent immobilization of enzyme in sol-gel composite film combined with Prussian blue/carbon nanotubes hybrid [J]. Biosensors and Bioelectronics, 2011, 26(9): 3973–3976.

    Article  Google Scholar 

  9. TIWARI A, ARYAL S, PILLA S, GONG S Q. An amperometric urea biosensor based on covalently immobilized urease on an electrode made of hyperbranched polyester functionalized gold nanoparticles [J]. Talanta, 2009, 78(4/5): 1401–1407.

    Article  Google Scholar 

  10. GUERRIERI A, BENEDETTO G E, PALMISANO F, ZAMBONIN P G. Electrosynthesized non-conducting polymers as permselective membranes in amperometric enzyme electrodes: A glucose biosensor based on a co-crosslinked glucose oxidase/overoxidized polypyrrole bilayer [J]. Biosensor and Bioelectronics, 1998, 13(1): 103–112.

    Article  Google Scholar 

  11. BARBADILLO M, CASERO E, PETIT D M D, VAZQUEZ L, PARIENTE F, LORENZO E. Gold nanoparticles-induced enhancement of the analytical response of an electrochemical biosensor based on an organic-inorganic hybrid composite material [J]. Talanta, 2009, 80(1): 797–802.

    Article  Google Scholar 

  12. LI Yang, LIU Xiao-yan, YUAN Hong-yan, XIAO Dan. Glucose biosensor based on the room-temperature phosphorescence of TiO2/SiO2 nanocomposite [J]. Biosensor and Bioeletronics, 2009, 24(12): 3706–3710.

    Article  Google Scholar 

  13. ROSSI A M, WANG L L, RABBI V, MURPHY T E. Porous silicon biosensor for detection of viruses [J]. Biosensor and Bioelectronics, 2007, 23(5): 741–745.

    Article  Google Scholar 

  14. LUAIS E, THOBIE G C, TAILLEUR A, DJOUADI M A, GRANIER A, TESSIER P Y, DEBARNOT D, PONCIN E F, BOUJTITA M. Preparation and modification of carbon nanotubes electrodes by cold plasmas processes toward the preparation of amperometric biosensors [J]. Electrochimica Acta, 2010, 55(26): 7916–7922.

    Article  Google Scholar 

  15. DENG Chun-yan, CHEN Jin-hua, NIE Zhou, SI Shi-hui. A sensitive and stable biosensor based on the direct electrochemistry of glucose oxidase assembled layer-by-layer at the multiwall carbon nanotube-modified electrode [J]. Biosensors and Bioelectronics, 2010, 26(1): 213–219.

    Article  Google Scholar 

  16. WISITSORAAT A, SRITONGKHAM P, KARUWAN C, PHOKHARATKUL D, MATUROS T, TUANTRANONT A. Fast cholesterol detection using flow injection microfluidic device with functionalized carbon nanotubes based electrochemical sensor [J]. Biosensors and Bioelectronics, 2010, 26(4): 1514–1520.

    Article  Google Scholar 

  17. ZHANG Yi, ZENG Guang-ming, TANG Lin, HUANG Dan-lian, JIANG Xiao-yun, NIU Chen-gang. A hydroquinone biosensor using modified core-shell magnetic nanoparticles supported on carbon paste electrode [J]. Biosensor and Bioelectronics, 2007, 22(9/10): 2121–2126.

    Article  Google Scholar 

  18. HO K C, TSAI P Y, LIN Y S, CHEN Y C. Using biofunctionalized nanoparticles to probe pathogenic bacteria [J]. Analytical Chemistry, 2004, 76(24): 7162–7168.

    Article  Google Scholar 

  19. KOUASSI G K, IRUDAYARAJ J. Magnetic and gold-coated magnetic nanoparticles as a DNA sensor [J]. Analytical Chemistry, 2006, 78(10): 3234–3241.

    Article  Google Scholar 

  20. LIANG Yuan-yuan, ZHANG Li-ming. Bioconjugation of papain on superparamagnetic nanoparticles decorated with carboxymethylated chitosan [J]. Biomacromolecules, 2007, 8(5): 1480–1486.

    Article  Google Scholar 

  21. LIU Ying, LEI Jian-ping, JU Huang-xian. Amperometric sensor for hydrogen peroxide based on electric wire composed of horseradish peroxidase and toluidine blue-multiwalled carbon nanotubes nanocomposite [J]. Talanta, 2008, 74(4): 965–970.

    Article  Google Scholar 

  22. QU Song, WANG J, KONG Jie-lie, YANG Peng-yuan, CHEN Guang. Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing [J]. Talanta, 2007, 71(3): 1096–1102.

    Article  Google Scholar 

  23. YAN Xu-xu, PANG Dai-wei, LU Zhe-xue, LU Jian-quan, TONG Hua. Electrochemical behavior of L-dopa at single-wall carbon nanotube-modified glassy carbon electrodes [J]. Journal of Electroanalytical Chemistry, 2004, 569(1): 47–52.

    Article  Google Scholar 

  24. SANTHOSH P, MANESH K M, GOPALAN A, LEE K P. Fabrication of a new polyaniline grafted multi-wall carbon nanotube modified electrode and its application for electrochemical detection of hydrogen peroxide [J]. Analytica Chimica Acta, 2006, 575(1): 32–38.

    Article  Google Scholar 

  25. WU Fang-hui, ZHAO Guang-chao, WEI Xian-wen. Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode [J]. Electrochemistry Communications, 2002, 4(9): 690–694.

    Article  Google Scholar 

  26. QU Sheng-chun, YANG Hai-bin, REN Da-wei, KAN Shi-hai, ZOU Guang-tian. Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions [J]. Journal of Colloid and Interface Science, 1999, 215(1): 190–192.

    Article  Google Scholar 

  27. ZHANG Mao-gen, GORSKI W. Electrochemical sensing based on redox mediation at carbon nanotubes [J]. Analytical Chemistry, 2005, 77(13): 3960–3965.

    Article  Google Scholar 

  28. YANG Da-peng, JI Hong-fang, TANG Guang-yan, REN Wei, ZHANG Hong-yu. How many drugs are catecholics [J]. Molecules, 2007, 12(4): 878–884.

    Article  Google Scholar 

  29. SIES H. Oxidative stress: Oxidants and antioxidants [J]. Experimental physiology, 1997, 82(7): 291–295.

    Google Scholar 

  30. YANNG Shao-ming, LI Yang-mei, JIANG Xiu-ming, CHEN Zhi-chun, LIN Xian-fu. Horseradish peroxidase biosensor based on layer-by-layer technique for the determination of phenolic compounds [J]. Sensors and Actuators B: Chemical, 2006, 114(2): 774–780.

    Article  Google Scholar 

  31. KOCHANA J, NOWAK P, WILKOLAZKA A J, BIEROŃ M. Tyrosinase/laccase bienzyme biosensor for amperometric determination of phenolic compounds [J]. Microchemical Journal, 2008, 89(2): 171–174.

    Article  Google Scholar 

  32. TEMBE S, INAMDAR S, HARAM S, KARVE M, SOUZ S F. Electrochemical biosensor for catechol using agarose-guar gum entrapped tyrosinase [J]. Journal of Biotechnology, 2007, 128(1): 80–85.

    Article  Google Scholar 

  33. WANG Sheng-fu, TAN Yu-mei, ZHAO Dong-ming, LIU Guo-dong. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitosan nanocomposite [J]. Biosensor and Bioelectronics, 2008, 23(12): 1781–1787.

    Article  Google Scholar 

  34. BANKS C E, COMPTON R G. Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: An edge plane pyrolytic graphite electrode study [J]. Analyst, 2005, 130(9): 1232–1239.

    Article  Google Scholar 

  35. JIA Jian-bo, WANG Bing-quan, WU Ai-guo, CHENG Guang-jin, LI Zhuang, DONG Shao-jun. A method to construct a third-generation horseradish peroxidase biosensor: Self-assembling gold nanoparticles to three-dimensional sol-gel network [J]. Analytical Chemistry, 2002, 74(9): 2217–2223.

    Article  Google Scholar 

  36. LEI Cun-xi, HU Shun-qin, SHEN Guo-li, YU Ru-qin. Immobilization of horseradish peroxidase to a nano-Au monolayer modified chitosan-entrapped carbon paste electrode for the detection of hydrogen peroxide [J]. Talanta, 2003, 59(5): 981–988.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-ming Zeng  (曾光明).

Additional information

Foundation item: Project(IRT0719) supported by the Program for Changjiang Scholars and Innovative Research Team in University, China; Projects (50978088, 51039001) supported by the National Natural Science Foundation of China; Project(2009FJ1010) supported by the Hunan Key Scientific Research Program, China; Project(10JJ7005) supported by the Natural Science Foundation of Hunan Province, China; Projects(CX2009B080, CX2010B157) supported by the Hunan Provincial Innovation Foundation For Postgraduate; Project supported by the Fundamental Research Funds for the Central Universities, Hunan University, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, Y., Zeng, Gm., Tang, L. et al. Laccase biosensor using magnetic multiwalled carbon nanotubes and chitosan/silica hybrid membrane modified magnetic carbon paste electrode. J. Cent. South Univ. Technol. 18, 1849–1856 (2011). https://doi.org/10.1007/s11771-011-0913-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-011-0913-1

Key words

Navigation