Skip to main content

Linearization of T-S fuzzy systems and robust H control

Abstract

Takagi-Sugeno (T-S) fuzzy model is difficult to be linearized because of membership functions included. So, novel T-S fuzzy state transformation and T-S fuzzy feedback are proposed for the linearization of T-S fuzzy system. The novel T-S fuzzy state transformation is the fuzzy combination of local linear transformation which transforms local linear models in the T-S fuzzy model into the local linear controllable canonical models. The fuzzy combination of local linear controllable canonical model gives controllable canonical T-S fuzzy model and then nonlinear feedback is obtained easily. After the linearization of T-S fuzzy model, a robust H controller with the robustness of sliding model control (SMC) is designed. As a result, controlled T-S fuzzy system shows the performance of H control and the robustness of SMC.

This is a preview of subscription content, access via your institution.

References

  1. HO W H, TSAI J T, CHOU J H. Robust-stable and quadratic-optimal control for TS-fuzzy-model-based control systems with elemental parametric uncertainties [J]. IET Control Theory & Applications, 2007, 1(3): 731–742.

    Article  Google Scholar 

  2. HO W H, TSAI J T, CHOU J H. Robust quadratic-optimal control of TS-fuzzy-model-based dynamic systems with both elemental parametric uncertainties and norm-bounded approximation error [J]. IEEE Trans Fuzzy Systems, 2009, 17(3): 518–531.

    Article  Google Scholar 

  3. HSU M R, HO W H, CHOU J H. Stable and quadratic optimal control for TS fuzzy-model-based time-delay control systems [J]. IEEE Trans Man and Cybernetics Systems, Part A: Systems and Humans, 2008, 38(4): 933–944.

    Article  Google Scholar 

  4. KRUSZEWSKI A, WANG R, GUERRA T M. Nonquadratic stabilization conditions for a class of uncertain nonlinear discrete time TS fuzzy models: A new approach [J]. IEEE Trans Automatic Control, 2008, 53(2): 606–611.

    Article  MathSciNet  Google Scholar 

  5. TAKAGI T, SUGENO M. Fuzzy identification of systems and its applications to modeling and control [J]. IEEE Trans Man and Cybernetics Systems, Part A: Systems and Humans, 1985, 15: 116–132.

    MATH  Google Scholar 

  6. TNANKA K, IKEDA T, WANG H O. Fuzzy regulators and fuzzy observers: Relaxed stability conditions and LMI-based designs [J]. IEEE Trans Fuzzy Systems, 1998, 6: 250–265.

    Article  Google Scholar 

  7. CHEN Bor-sen TSENG Chung-shi, UANG Huet-jian. Robustness design of nonlinear dynamic systems via fuzzy linear control [J]. IEEE Trans Fuzzy Systems, 1999, 7(5): 571–585.

    Article  Google Scholar 

  8. TNANKA K, WANG H O. Fuzzy control systems design and analysis: A linear matrix inequality approach [M]. New York: John Wiley & Sons Inc, 2001: 49–81.

    Google Scholar 

  9. FENG Gang. A survey on analysis and design of model-based fuzzy control systems [J]. IEEE Trans Fuzzy Systems, 2006, 14(5): 676–697.

    Article  Google Scholar 

  10. MOHANMMAND N, LAM H K. Relaxed LMI-based stability conditions for Takagi-Sugeno fuzzy control systems using Regional-Membership-Function-Shape-Dependent analysis approach [J]. IEEE Trans Fuzzy Systems, 2009, 17(5):1221–1228.

    Article  Google Scholar 

  11. ZHAO Yan, GAO Hui-jun, LAM J, DU Bao-zhu. Stability and stabilization of delayed T-S fuzzy systems: A delay partitioning approach [J]. IEEE Trans Fuzzy Systems, 2009, 17(4):750–762.

    Article  Google Scholar 

  12. SOUZA F O, MOZELLI L A, PALHARES R M. On stability and stabilization of T-S fuzzy time-delayed systems [J]. IEEE Trans Fuzzy Systems, 2009, 17(6): 1450–1455.

    Article  Google Scholar 

  13. LEE H G, KIM Y M, JEON H T. On the linearization via a restricted class of dynamic feedback [J]. IEEE Trans AC, 2000, 45: 1385–1391.

    MATH  MathSciNet  Google Scholar 

  14. KHALIL H K. Nonlinear systems [M]. New Jersey: Prentice Hall, 2002: 505–544.

    Google Scholar 

  15. LEE H G, ARAPOSTATHIS A, MARCUS S I. Linearization of discrete-time systems via restricted dynamic feedback [J]. IEEE Trans AC, 2003, 48: 1646–1650.

    MathSciNet  Google Scholar 

  16. YOUNG K D, UTKIN V I, OZGUNER U. A control engineer’s guide to sliding mode control [J]. IEEE Trans on Control Systems Technology, 1999, 7(3): 328–342.

    Article  Google Scholar 

  17. PARK S K, AHN H K. Nonconservative sliding mode control with the feedback linearization or nonlinear system [C]// Proceedings of the 39th IEEE Conference on Decision and Control. Sydney: 2000: 2210–2216. (in Sydney)

  18. PARK S K, AHN H G. Robust optimal controller design with novel sliding surface [J]. IEEE Proc Control Theory Appl, 1999, 146(3): 242–246.

    Article  MathSciNet  Google Scholar 

  19. LIUTANAKUL P, PIERFEDERICI S, TABAR F M. Application of SMC with I/O feedback linearization to the control of the cascade Controlled-Rectifier/Inverter-Motor drive system with small dc-link capacitor [J]. IEEE Trans Power Electro, 2008, 23: 2489–2499.

    Article  Google Scholar 

  20. KUSCHEWSKI J G, HUI S, ZAK S H. Application of feed forward neural networks to dynamical system identification and control [J]. IEEE Trans Control Systems Technology, 1993, 1(1): 37–49.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Sung Yoon.

Additional information

Foundation item: Research financially supported by Changwon National University in 2009

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yoon, TS., Wang, Fg., Park, SK. et al. Linearization of T-S fuzzy systems and robust H control. J. Cent. South Univ. Technol. 18, 140–145 (2011). https://doi.org/10.1007/s11771-011-0671-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-011-0671-0

Key words

  • T-S fuzzy control
  • linearization
  • H control
  • sliding mode control