Skip to main content
Log in

Synthesis and characterization of Fe3O4 magnetic nanoparticles and their heating effects under radiofrequency capacitive field

  • Published:
Journal of Central South University of Technology Aims and scope Submit manuscript

Abstract

Fe3O4 magnetic nanoparticles with diameters varying from 10 to 426 nm were synthesized and characterized. Heating effects of Fe3O4 magnetic nanoparticles under radiofrequency capacitive field (RCF) with frequency of 27.12 MHz and power of 60–150 W were investigated. When the power of RCF is lower than 90 W, temperatures of Fe3O4 magnetic nanoparticles (75–150 mg/mL) can be raised and maximal temperatures are all lower than 50 °C. When the power of RCF is 90–150 W, temperatures of Fe3O4 magnetic nanoparticles can be quickly raised and are all obviously higher than those of normal saline and distilled water under the same conditions. Temperature of Fe3O4 magnetic nanoparticles can even reach 70.2 °C under 150 W RCF. Heating effects of Fe3O4 magnetic nanoparticles are related to RCF power, particle size and particle concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LAURENCE D E, HERVEE M, KATEL H, EMILIE M, MARTIN S, CLAUDE L, PIERRE D, IGOR C. Nanovectors for anticancer agents based on superparamagnetic iron oxide nanoparticles [J]. Int J Nanomedicine, 2007, 2(4): 541–550.

    Google Scholar 

  2. JOHANNSEN M, JORDAN A, SCHOLZ R, KOCH M, LEIN M, DEGER S, ROIGAS J, JUNG K, LOENING S. Evaluation of magnetic fluid hyperthermia in a standard rat model of prostate cancer [J]. J Endourol, 2004, 18(5): 495–500.

    Article  Google Scholar 

  3. LATORRE M, RINALDI C. Applications of magnetic nanoparticles in medicine: Magnetic fluid hyperthermia [J]. P R Health Sci J, 2009, 28(3): 227–238.

    Google Scholar 

  4. SHIDO Y, NISHIDA Y, SUZUKI Y, KOBAYASHI T, ISHIGURO N. Targeted hyperthermia using magnetite cationic liposomes and an alternating magnetic field in a mouse osteosarcoma model [J]. J Bone Joint Surg Br, 2010, 92(4): 580–585.

    Article  Google Scholar 

  5. GUO Zhong-hua, TANG Lu-Xin, TANG Jin-tian, XIE Bin, DENG Xiao-hui. Development of measurement and control technologies for hyperthermia treatments of tumors with AC magnetic field [J]. Chinese Journal of Medical Instrumentation, 2006, 30(1): 39–42. (in Chinese)

    Google Scholar 

  6. LIU Xuan, XU Bo, XIA Qi-sheng, ZHAO Tian-de, TANG Jin-tian. A method of showing thermal effect of iron oxide nanoparticles in alternating magnetic field [J]. Chinese Journal of Cancer, 2005, 24(9): 1148–1150. (in Chinese)

    Google Scholar 

  7. HERGT R, DUTZ S. Magnetic particle hyperthermia: Biophysical limitations of a visionary tumour therapy [J]. J Magn Magn Mater, 2005, 293: 80–86.

    Article  Google Scholar 

  8. MA Ming, WU Ya, ZHOU Jie, SUN Yong-kang, ZHANG Yu, GU Ning. Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field [J]. J Magn Magn Mater, 2004, 268: 33–39.

    Article  Google Scholar 

  9. HABASH R W, BANSAL R, KREWSKI D, ALHAFID H T. Thermal therapy. Part I: An introduction to thermal therapy [J]. Crit Rev Biomed Eng, 2006, 34: 459–489.

    Google Scholar 

  10. PALUSSIERE J, DESCAT E, FONCK M, BONICHON F, CHOMY F, BECOUARN Y, AVRIL A, KIND M, RAVAUD A. Radiofrequency ablation in the treatment of liver and lung tumors [J]. Bull Cancer, 2009, 96(11): 1099–1109.

    Google Scholar 

  11. HABASH R W, BANSAL R, KREWSKI D, ALHAFID H T. Thermal therapy. Part II: Hyperthermia techniques [J]. Crit Rev Biomed Eng, 2006, 34(6): 491–542.

    Google Scholar 

  12. STAUFFER P R. Evolving technology for thermal therapy of cancer [J]. Int J Hyperthermia, 2005, 21(8): 731–744.

    Article  Google Scholar 

  13. MOLDAY R S. Magnetic iron-dextran microspheres: US, 4452773 [P]. 1984-06-05.

  14. SUGIMOTO T, MATIJEVIC E. Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels [J]. J Colloid Interface Sci, 1980, 74: 227–243.

    Article  Google Scholar 

  15. DU Yi-qun, ZHANG Dong-sheng, NI Hai-yan, GU Ning, YAN Shi-yan, TANG Qiu-sha, JIN Li-qiang, WAN Mei-ling. Preparation and characterization of Fe3O4 nano-magnetic particles for tumor hyperthermia [J]. Journal of Chinese Electron Microscopy Society, 2005, 24(6): 608–612. (in Chinese)

    Google Scholar 

  16. OHGURI T, IMADA H, YAHATA K, MORIOKA T, NAKANO K, TERASHIMA H, KOROGI Y. Radiotherapy with 8-MHz radiofrequency-capacitive regional hyperthermia for stage III non-small-cell lung cancer: The radiofrequency-output power correlates with the intraesophageal temperature and clinical outcomes [J]. Int J Radiat Oncol Biol Phys, 2009, 73(1): 128–135.

    Article  Google Scholar 

  17. SHIELDS N, O’HARE N, GORMLEY J. An evaluation of safety guidelines to restrict exposure to stray radiofrequency radiation from short-wave diathermy units [J]. Phys Med Biol, 2004, 49(13): 2999–3015.

    Article  Google Scholar 

  18. WAN Bai-kun, ZHU Xin, CHENG Xiao-man, ZHANG Li-xin, LIN Shi-yin, WANG Wei. Parameter optimization of temperature field in RF-capacitive hyperthermia [J]. Progress in Natural Science, 2001, 11(9): 667–674.

    Google Scholar 

  19. HABASH R W, BANSAL R, KREWSKI D, ALHAFID H T. Thermal therapy. Part IV: Electromagnetic and thermal dosimetry [J]. Crit Rev Biomed Eng, 2007, 35: 123–182.

    Google Scholar 

  20. JORDAN A, SCHOLZ R, MAIER-HAU K, JOHANNSEN M, WUST P, NADOBNY J, SCHIRRA H, SCHMIDT H, DEGER S, LOENING S, LANKSCH W, FELIX R. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia [J]. J Magn Magn Mater, 2001, 225: 118–126.

    Article  Google Scholar 

  21. HE Han-wei, LIU Hong-jiang, ZHOU Ke-chao, WANG Wei, RONG Peng-fei. Characteristics of magnetic Fe3O4 nanoparticles encapsulated with human serum albumin [J]. J Cent South Univ Technol, 2006, 13(3): 6–11.

    Article  Google Scholar 

  22. MATSUI Y, NAKAGAWA A, KAMIYAMA Y, YAMAMOTO K, KUBO N, NAKASE Y. Selective thermocoagulation of unresectable pancreatic cancers by using radiofrequency capacitive heating [J]. Pancreas, 2000, 20(1): 14–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-tian Tang  (唐劲天).

Additional information

Foundation item: Projects(30571779, 10775085) supported by the National Natural Science Foundation of China; Project(Z07000200540704) supported by Beijing Municipal Science and Technology Commission, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Xh., Feng, Zm., Ouyang, Ww. et al. Synthesis and characterization of Fe3O4 magnetic nanoparticles and their heating effects under radiofrequency capacitive field. J. Cent. South Univ. Technol. 17, 1185–1189 (2010). https://doi.org/10.1007/s11771-010-0616-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-010-0616-z

Key words

Navigation