Skip to main content
Log in

Structural evolution and optical characterization in argon diluted Si:H thin films obtained by plasma enhanced chemical vapor deposition

  • Published:
Journal of Central South University of Technology Aims and scope Submit manuscript

Abstract

The structural evolution and optical characterization of hydrogenated silicon (Si:H) thin films obtained by conventional radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) through decomposition of silane diluted with argon were studied by X-ray diffractometry (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, transmission electron microscopy (TEM), and ultraviolet and visible (UV-vis) spectroscopy, respectively. The influence of argon dilution on the optical properties of the thin films was also studied. It is found that argon as dilution gas plays a significant role in the growth of nano-crystal grains and amorphous network in Si:H thin films. The structural evolution of the thin films with different argon dilution ratios is observed and it is suggested that argon plasma leads to the nanocrystallization in the thin films during the deposition process. The nanocrystallization initiating at a relatively low dilution ratio is also observed. With the increase of argon portion in the mixed precursor gases, nano-crystal grains in the thin films evolve regularly. The structural evolution is explained by a proposed model based on the energy exchange between the argon plasma constituted with Ar* and Ar+ radicals and the growth regions of the thin films. It is observed that both the absorption of UV-vis light and the optical gap decrease with the increase of dilution ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MEIER J, FLUCKIGER R, KEPPNER H, SHAH A. Complete microcrystalline p-i-n solar cell—Crystalline or amorphous cell behavior? [J]. Appl Phys Lett, 1994, 65(7): 860–862.

    Article  Google Scholar 

  2. STAEBLER D L, WRONSKI C R. Reversible conductivity changes in discharge-produced amorphous Si [J]. Appl Phys Lett, 1977, 31(4): 292–294.

    Article  Google Scholar 

  3. FU Y Q, LUO J K, MILNE S B, FLEWITT A J, MILNE W I. Residual stress in amorphous and nanocrystalline Si films prepared by PECVD with hydrogen dilution [J]. Mat Sci Engr B, 124/125(s): 132–137.

  4. VALLAT-SAUVAIN E, KROLL U, MEIER J, SHAH A, POHL J. evolution of the microstructure in microcrystalline silicon prepared by very high frequency glow-discharge using hydrogen dilution [J]. J Appl Phys, 2000, 87(6): 3137–3142.

    Article  Google Scholar 

  5. LI S B, WU Z M, JIANG Y D, LI W, LIAO N M, YU J S. Structure and 1/f noise of boron doped polymorphous silicon films [J]. Nanotechnology, 2008, 19(8): 085706.

    Article  Google Scholar 

  6. DAS U K, MIDDYA A R, RATH J K, LONGEAUD C, WILLIAMSON D L, CHAUDHURI P. Nanostructures and defects in silicon-hydrogen alloys prepared by argon dilution [J]. J Non-cryst Solids, 2000, 276(1): 46–55.

    Article  Google Scholar 

  7. van ELZAKKER G, NADAZDY V, TICHELAAR F D, METSELAAR J W, ZEMAN M. Analysis of structure and defects in thin silicon films deposited from hydrogen diluted silane [J]. Thin Solid Films, 2006, 511/512(7): 252–257.

    Article  Google Scholar 

  8. BHATTACHARYA K, DAS D. Nanocrystalline silicon films prepared from silane plasma in RF-PECVD, using helium dilution without hydrogen: structural and optical characterization [J]. Nanotechnology 2007, 18(41): 415704.

    Article  Google Scholar 

  9. YOON J H, LEE J Y, PARK D H. Photoluminescence in microcrystalline silicon films grown from argon diluted silane [J]. J Non-cryst Solids, 2004, 338/340(s1): 465–468.

    Article  Google Scholar 

  10. YOUNG D L, STRADINS P, XU Y, GEDVILAS L M, IWANICZKO E, YAN Y, BRANZ H M, WANG Q, WILLIAMSON D L. Nanostructure evolution in hydrogenated amorphous silicon during hydrogen effusion and crystallization [J]. Appl Phys Lett, 2007, 90(8): 081923.

    Article  Google Scholar 

  11. DI Z F, WANG Y Q, NASTASI M, SHAO L, LEE J K, THEODORE N D. Evidence for ion irradiation induced dissociation and reconstruction of Si—H bonds in hydrogen-implanted silicon [J]. Appl Phys Lett, 2008, 93(10): 104–103.

    Article  Google Scholar 

  12. DAS U K, CHAUDHURI P, KSHIRSAGAR S T. Effect of argon dilution on the structure of microcrystalline silicon deposited from silane [J]. J Appl Phys, 1996, 80(9): 5389–5397.

    Article  Google Scholar 

  13. DAS D. Structural studies on Si:H network by Raman, micro-photoluminescence, electron microscopy and ultraviolet ellipsometry: Effect of Ar dilution to the SiH4-plasma [J]. Thin Solid Films, 2005, 476(2): 237–245.

    Article  Google Scholar 

  14. SOPPE W J, DEVILEE C, GEUSEBROEK M, LOFFLER J, MUFFLER H J. The effect of argon dilution on deposition of microcrystalline silicon by microwave plasma enhanced chemical vapor deposition [J]. Thin Solid Films, 2007, 515(19): 7490–7494.

    Article  Google Scholar 

  15. KUSHNER M J. A model for the discharge kinetics and plasma chemistry during plasma enhanced chemical vapor deposition of amorphous silicon [J]. J Appl Phys, 1988, 63(8): 2532–2551.

    Article  Google Scholar 

  16. LANGFORD A A, FLEET M L, NELSON B P, LANFORD W A, MALEY N. Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon [J]. Phys Rev B, 1992, 45(23): 13367–13377.

    Article  Google Scholar 

  17. BRODSKY M H, CARDONA M, CUOMO J J. Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering [J]. Phys Rev B, 1977, 16(8): 3556–3571.

    Article  Google Scholar 

  18. LUCOVSKY G, NEMANICH R J, KNIGHTS J C. Structural interpretation of the vibrational spectra of a-Si: H alloys [J]. Phys Rev B, 1979, 19(4): 2064–2073.

    Article  Google Scholar 

  19. MARINOV M, ZOTOV N. Model investigation of the Raman spectra of amorphous silicon [J]. Phys Rev B, 1997, 55(5): 2938–2944.

    Article  Google Scholar 

  20. LIAO N M, LI W, JIANG Y D, WU Z M, LI S B, LIU Z, LI Z, JIN X, CHEN Y X. Electron irradiation effects on the properties of heavily phosphorus-doped a-Si:H films prepared from undiluted silane [J]. J Phys D, 2008, 41(20): 205412.

    Article  Google Scholar 

  21. VEPREK S, SAROTT F A, IQBAL Z. Effect of grain boundaries on the Raman spectra, optical absorption, and elastic light scattering in nanometer-sized crystalline silicon [J]. Phys Rev B, 1987, 36(6): 3344–3350.

    Article  Google Scholar 

  22. YUE G, LORENTZEN J D, LIN J, HAN D, WANG Q. Photoluminescence and Raman studies in thin-film materials: Transition from amorphous to microcrystalline silicon [J]. Appl Phys Lett, 1999, 75(4): 492–494.

    Article  Google Scholar 

  23. BUSTARRET E, HACHICHA M A, BRUNEL M. Experimental determination of the nanocrystalline volume fraction in silicon thin films from Raman spectroscopy [J]. Appl Phys Lett, 1988, 52(20): 1675–1677.

    Article  Google Scholar 

  24. WOOD D L, TAUC J. Weak absorption tails in amorphous semiconductors [J]. Phys Rev B, 1972, 5(8): 3144–3151.

    Article  Google Scholar 

  25. SANSONNENS L, HOWLING AA, HOLLENSTEIN C, DORIER J L, KROLL U. The role of metastable atoms in argon-diluted silane radiofrequency plasmas [J]. J Phys D, 1994, 27(7): 1406–1411.

    Article  Google Scholar 

  26. MAKABE T, NAKANO N, YAMAGUCHI Y. Modeling and diagnostics of the structure of rf glow discharges in Ar at 13.56 MHz [J]. Phys Rev A, 1992, 45(4): 2520–2531.

    Article  Google Scholar 

  27. STAEBLER D L, PANKOVE J I. Conductivity changes in dehydrogenated and rehydrogenated discharge-produced a-Si:H [J]. Appl Phys Lett, 1980, 37(7): 609–612.

    Article  Google Scholar 

  28. GUPTA N D, RAY P P, CHAUDHURI P, DAS U K, VIGNOLI S, JARDIN C. Study of amorphous to microcry-stalline silicon transformation from argon diluted silane [R]. San Francisco, CA: Materials Research Society, 2002.

    Google Scholar 

  29. TRWOGA P F, KENYON A J, PITT C W. Modeling the contribution of quantum confinement to luminescence from silicon nanoclusters [J]. J Appl Phys, 1998, 83(7): 3789–3794.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li  (李伟).

Additional information

Foundation item: Project(60425101) supported by the National Outstanding Young Scientists Foundation of China; Project(06DZ0241) supported by the Science Foundation of General Armament Department of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., He, J., Li, W. et al. Structural evolution and optical characterization in argon diluted Si:H thin films obtained by plasma enhanced chemical vapor deposition. J. Cent. South Univ. Technol. 17, 1163–1171 (2010). https://doi.org/10.1007/s11771-010-0613-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-010-0613-2

Key words

Navigation