Skip to main content
Log in

Luminescent properties dependence of water-soluble CdTe quantum dots on stabilizing agents and reaction time

  • Published:
Journal of Central South University of Technology Aims and scope Submit manuscript

Abstract

The influence of stabilizing agents and reaction time on the luminescent properties of water-soluble CdTe quantum dots (QDs) was discussed. The thioglycolic acid (TGA)-CdTe ODs were characterized by TEM, XRD and FTIR. It is found that larger-size QDs can be synthesized more easily when L-cysteine (Cys) or golutathione (GSH) is chosen as stabilizing agent and TGA is proper to prepare highly luminescent QDs because of the effect between Cd2+ and sulfhydryl group. Furthermore, the absorption wavelength, full width at half maximum (FWHM), stokes shift, photoluminescence (PL) quantum yield and PL stability of TGA-CdTe are strongly dependent on reaction time, in which the absorption wavelength changes against reaction time with an exponential function. The TGA-CdTe QDs prepared at 2 h possess more excellent luminescent properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHEN Liang-dong, LIU Jia, YU Xue-feng, HE Man, PEI Xiao-feng, TANG Zhao-you, WANG Qu-quan, PANG Dai-wen, LI Yan. The biocompatibility of quantum dot probes used for the targeted imaging of hepatocellular carcinoma metastasis [J]. Biomaterials, 2008, 29(31): 4170–4176.

    Article  Google Scholar 

  2. GAO X H, CUI Y Y, LEVENSON R M, CHUNG L W K, NIE S M. In vivo cancer targeting and imaging with semiconductor quantum dots [J]. Nat Biotechnol, 2004, 22(8): 969–976.

    Article  Google Scholar 

  3. CAI W B, SHIN D W, CHEN K, GHEYSENS O, CAO Q Z, WANG S X, GAMBHIR S S, CHEN X Y. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects [J]. Nano Lett, 2006, 6(4): 669–676.

    Article  Google Scholar 

  4. YU W W, QU L H, GUO W Z, PENG X G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals [J]. Chem Mater, 2003, 15(14): 2854–2860.

    Article  Google Scholar 

  5. LIU Y S, SUN Y H, VERNIER P T, LIANG C H, CHONG S Y C, GUNDERSEN M A. pH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells [J]. J Phys Chem C, 2007, 111(7): 2872–2878.

    Article  Google Scholar 

  6. KAPITONOV A M, STUPAK A P, GAPONENKO S V, PETROV E P, ROGACH A L, EUCHMÜLIER A. Luminescence properties of thiol-stabilized CdTe nanocrystals [J]. J Phys Chem B, 1999, 103(46): 10109–10113.

    Article  Google Scholar 

  7. LIU Y F, CHEN W, JOLY A G, WANG Y Q, POPE C, ZHANG Y B, BOVIN J O, SHERWOOD P. Comparison of water-soluble CdTe nanoparticles synthesized in air and in nitrogen [J]. J Phys Chem B, 2006, 110(34): 16992–17000.

    Article  Google Scholar 

  8. TALAPIN D V, ROGACH A L, SHEVCHENKO E V, KORNOWSKI A, HAASE M, WELLER H. Dynamic distribution of growth rates within the ensembles of colloidal II–VI and III–V semiconductor nanocrystals as a factor governing their photoluminescence efficiency [J]. J Am Chem Soc, 2002, 124(20): 5782–5790.

    Article  Google Scholar 

  9. MATTOUSSI H, MAURO J M, GOLDMAN E R, ANDERSON G P, SUNDAR V C, MIKULEC F V, BAWENDI M G. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein [J]. J Am Chem Soc, 2000, 122(49): 12142–12150.

    Article  Google Scholar 

  10. GAPONIK N, TALAPIN D V, ROGACH A L, HOPPE K, SHEVCHENKO E V, KORNOWSKI A, EYCHMÜLLER A, WELLER H. Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes [J]. J Phys Chem B, 2002, 106(29): 7177–7185.

    Article  Google Scholar 

  11. ZHANG Hao, ZHOU Zhen, YANG Bai. The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles [J]. J Phys Chem B, 2003, 107(1): 8–13.

    Article  Google Scholar 

  12. TALAPIN D V, HAUBOLD S, ROGACH A L, KORNOWSKI A, HAASE M, WELLER H. A novel organometallic synthesis of highly luminescent CdTe nanocrystals [J]. J Phys Chem B, 2001, 105(12): 2260–2263.

    Article  Google Scholar 

  13. ROGACH A L, KATSIKAS L, KORNOWSKI A, SU D S, EYCHMÜLLER A, WELLER H. Synthesis and characterization of thiol-stabilized CdTe nanocrystals [J]. Ber Bunsen-Ges Phys Chem, 1996, 100(11): 1772–1778.

    Google Scholar 

  14. YU W W, WANG Y A, PENG X G. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals [J]. Chem Mater, 2003, 15(22): 4300–4308.

    Article  Google Scholar 

  15. GUO Jia, YANG Wu-li, WANG Chang-chun. Systematic study of the photoluminescence dependence of thiol-capped CdTe nanocrystals on the reaction conditions [J]. J Phys Chem B, 109(37): 17467–17473.

  16. MANDAL A, TAMAI N. Influence of acid on luminescence properties of thioglycolic acid-capped CdTe quantum dots [J]. J Phys Chem C, 2008, 112(22): 8244–8250.

    Article  Google Scholar 

  17. WANG Q, KUO Y C, WANG Y W, SHING G, RUENGRUGLIKIT C, HUANG Q R. Luminescent properties of water-soluble denatured bovine serum albumin-coated CdTe quantum dots [J]. J Phys Chem B, 2006, 110(34): 16860–16866.

    Article  Google Scholar 

  18. DENG Da-wei, QIN Yuan-bin, YANG Xi, YU Jun-sheng, PAN Yi. The selective synthesis of water-soluble highly luminescent CdTe nanoparticles and nanorods: The influence of the precursor Cd/Te molar ratio [J]. J Cryst Growth, 2006, 296(2): 141–149.

    Article  Google Scholar 

  19. DAGTEPE P, CHIKAN V. Effect of Cd/Te ratio on the formation of CdTe magic-sized quantum dots during aggregation [J]. J Phys Chem A, 2008, 112(39): 9304–9311.

    Article  Google Scholar 

  20. HE Yao, LU Hao-ting, SAI Li-man, LAI Wen-yong, FAN Qu-li, WANG Lian-hui, HUANG Wei. Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence [J]. J Phys Chem B, 2006, 110(27): 13370–13374.

    Article  Google Scholar 

  21. WANG Fang-bin, FAN Mei-yi, LIU You-nian, WANG Jian-xiu, ZENG Dong-ming, HUANG Ke-long. Fabrication of ferrocenyl glutathione modified electrode and its application for detection of cadmium ions [J]. Journal of Central South University of Technology, 2008, 15(1): 44–48.

    Article  Google Scholar 

  22. PAN Dao-cheng, JI Xiang-ling, An Li-jia, LU Yun-feng. Observation of nucleation and growth of CdS nanocrystals in a two-phase system [J]. Chem Mater, 2008, 20(11): 3560–3566.

    Article  Google Scholar 

  23. GERHARDS C, DROST C S, SGOBBA V, GULEI D M. Conjugating luminescent CdTe quantum dots with biomolecules [J]. J Phys Chem B, 2008, 112(46): 14482–14491.

    Article  Google Scholar 

  24. BORCHERT H, TALAPIN D V, GAPONIK N, MCGINLEY C, ADAM S, LOBO A, MÖLLER T, WELLER H. Relations between the photoluminescence efficiency of CdTe nanocrystals and their surface properties revealed by synchrotron XPS [J]. J Phys Chem B, 2003, 107(36): 9662–9668.

    Article  Google Scholar 

  25. ALIVISATOS A P. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science, 1996, 271(5251): 933–937.

    Article  Google Scholar 

  26. MURRAY C B, BAWENDI M G, KAGAN C R. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies [J]. Annu Rev Mater Sci, 2000, 30: 545–610.

    Article  Google Scholar 

  27. TALAPIN D V, ROGACH A L, HAASE M, WELLER H. Evolution of an ensemble of nanoparticles in a colloidal solution: Theoretical study [J]. J Phys Chem B, 2001, 105(49): 12278–12285.

    Article  Google Scholar 

  28. PENG X G, WICKHAM J, ALIVISATOS A P. Kinetics of II–VI and III–V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions [J]. J Am Chem Soc, 1998, 120(21): 5343–5344.

    Article  Google Scholar 

  29. CONDE J P, BHATTACHARJEE A K, CHAMARRO M, LAVALLARD P, PETRIKOV V D, LIPOVSKII A A. Photoluminescence stokes shift and exciton fine structure in CdTe nanocrystals [J]. Phys Rev B, 2001, 64(11): 113303.

    Article  Google Scholar 

  30. EFROS A L, ROSEN M, KUNO M, NIRMAL M, NORRIS D J, BAWENDI M. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states [J]. 1996, 54(7): 4843–4856.

    Google Scholar 

  31. MACHOL J L, WISE F W, PATEL R C, TANNER D B. Vibronic quantum beats in PbS microcrystallites [J]. Phys Rev B, 1993, 48(4): 2819–2822.

    Article  Google Scholar 

  32. CAI W B, HSU A R, LI Z B, CHEN X Y. Are quantum dots ready for in vivo imaging in human subjects [J]. Nanoscale Res Lett, 2007, 2(6): 265–281.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-xian Wang  (汪勇先).

Additional information

Foundation item: Projects(10805069, 10405034) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Wang, Yx., Zhang, Gx. et al. Luminescent properties dependence of water-soluble CdTe quantum dots on stabilizing agents and reaction time. J. Cent. South Univ. Technol. 17, 1148–1154 (2010). https://doi.org/10.1007/s11771-010-0611-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-010-0611-4

Key words

Navigation