Skip to main content
Log in

Electron bandstructure of kaolinite and its mechanism of flotation using dodecylamine as collector

  • Published:
Journal of Central South University of Technology Aims and scope Submit manuscript

Abstract

The bulk electronic structure of kaolinite (001) plane was studied with quantum mechanical calculations. The CASTEP parameterization of ultrasoft pseudopotentials without core corrections was used to optimize the structure of kaolinite bulk and slab models. The results show that Fermi energy of kaolinite (001) plane is 3.05 eV, and the band gap is 4.52 eV. The partial density of states (PDOS) of kaolinite (001) plane indicates that Al—O and Si—O bonds on the mineral surface are highly polar. The oxygen atoms of hydroxyl groups in surface layer are capable of forming hydrogen bond with the head group of cationic collectors. The properties of dodecylamine (DDA) cation were also calculated by density function theory (DFT) method at B3LYP/6-31G (d) level for illuminating the flotation processes of kaolinite. Besides the electrostatic attraction, the mechanism between kaolinite and DDA is found to be hydrogen bonds under acidic condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AKIBA E, HAYAKAWA H, HAYASHI S, MIYAWAKI R, TOMURA S, SHIBASAKI Y, IZUMI F, ASANO H, KAMIYAMA T. Structure refinement of synthetic deuterated kaolinite by rietveld analysis using time-of-flight neutron powder diffraction data [J]. Clays and Clay Minerals, 1997, 45(6): 781–788.

    Article  Google Scholar 

  2. BISH D L, VON DREELE R B. Rietveld refinement of non-hydrogen atomic positions in kaolinite [J]. Clays and Clay Minerals, 1989, 37(4): 289–296.

    Article  Google Scholar 

  3. CAO Xue-feng, HU Yue-hua, JIANG Yu-ren. Flotation mechanism of aluminum silicate minerals with N-dodecyl-1, 3-diaminopropane [J]. Chinese Journal of Nonferrous Metals, 2001, 11(4): 693–696. (in Chinese)

    Google Scholar 

  4. LI Hai-pu, HU Yue-hua, JIANG Yu-ren. Interaction mechanism between modified starches and aluminum-silicate minerals [J]. Chinese Journal of Nonferrous Metals, 2001, 11(4): 697–681. (in Chinese)

    Google Scholar 

  5. ZHAO Shi-min, WANG Diang-zuo, HU Yue-hua. Flotation of aluminosilicates using N-(2-aminoethyl)-1-naphthaleneacetamide [J]. Minerals Engineering, 2003, 16(10): 1031–1033.

    Article  Google Scholar 

  6. ZHAO Shi-min, WANG Dian-zuo, HU Yue-hua. A series of aminoamides used for flotation of kaolinite [J]. Journal of University of Science and Technology Beijing, 2005, 12(3): 208–212.

    Google Scholar 

  7. LASAGA A C. Fundamental approaches in describing mineral dissolution and precipitation rates [R]. Washington DC: Mineralogical Society of America, 1995.

    Google Scholar 

  8. SAUER J, UGLIENGO P, GARRONE E, SAUNDERS V R. Theoretical study of van der Waals complexes at surface sites in comparison with the experiment [J]. Chemical Reviews, 1994, 94(7):2095–2160.

    Article  Google Scholar 

  9. COLLINS D R, CATLOW C R. Computer simulations of structures and cohesive properties of micas [J]. American Mineralogist, 1992, 77(11/12): 1172–1181.

    Google Scholar 

  10. BOSENICK A, DOVE M T, MYERS E R, PALIN E J, SAINZ-DIAZ C I, GUITON B S, WARREN M C, CRAIG M S, REDFERN S A T. Computational methods for the study of energies of cation distributions: Applications to cation-ordering phase transitions and solid solutions [J]. Mineralogical Magazine, 2001, 65(2): 193–219.

    Article  Google Scholar 

  11. KUBICKI J D, BLAKE G A, APITZ S E. Ab initio calculations on aluminosilicate Q3 species: Implications for atomic structures of mineral surfaces and dissolution mechanisms of feldspars [J]. American Mineralogist, 1996, 81(7/8): 789–799.

    Google Scholar 

  12. KUBICKI J D, APITZ S E. Molecular cluster models of aluminum oxide and aluminum hydroxide surfaces [J]. American Mineralogist, 1998, 83(9/10): 1054–1066.

    Google Scholar 

  13. SAINZ-DIAZ C I, TIMON V, BOTELLA V, HERNANDEZ-LAGUNA A. Isomorphous substitution effect on the vibration frequencies of hydroxyl groups in molecular cluster models of the clay octahedral sheet [J]. American Mineralogist, 2000, 85(7/8):1038–1045.

    Google Scholar 

  14. SHERMAN D M. Hartree-Fock band structure, equation of state, and pressure-induced hydrogen bonding in brucite, Mg(OH)2 [J]. American Mineralogist, 1991, 76(9/10): 1769–1772.

    Google Scholar 

  15. SMRCOK L, BENCO L. Ab initio periodic Hartree-Fock study of lizardite [J]. American Mineralogist, 1996, 81(11/12): 1405–1412.

    Google Scholar 

  16. WINKLER B, MILMAN V, PAYNE M C. Ab initio total energy studies of minerals using density functional theory and the local density approximation [J]. Mineralogical Magazine, 1995, 59(4):589–596.

    Article  Google Scholar 

  17. WINKLER B, MILMAN V, HYTHA M, PICKARD C, MILMAN V, WARREN M C. Theoretical investigation of bonding in diaspore [J]. European Journal of Mineralogy, 2001, 13(2): 343–349.

    Article  Google Scholar 

  18. BRIDGEMAN C H, BUCKINGHAM A D, SKIPPER N T, PAYNE M C. Ab initio total energy study of uncharged 2:1 clays and their interaction with water [J]. Molecular Physics, 1996, 89(3): 879–888.

    Article  Google Scholar 

  19. EDELBRO R, SANDSTROM A, PAUL J. Full potential calculations on the electron band structures of sphalerite, pyrite and chalcopyrite [J]. Applied Surface Science, 2003, 206(1/4): 300–313.

    Article  Google Scholar 

  20. PAYNE M C, TETER M P, ALLAN D C. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients [J]. Reviews of Modern Physics, 1992, 64(4): 1045–1097.

    Article  Google Scholar 

  21. PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlationenergy [J]. Physical Review B, 1992, 45(13): 13244–13249.

    Article  Google Scholar 

  22. WHITE J A, BIRD D M. Implementation of gradientcorrected exchange-correlation potentials in Car-Parrinello total energy calculations [J]. Physical Review B, 1994, 50(21): 4954–4957.

    Article  Google Scholar 

  23. VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Physical Review B, 1990, 41(11): 7892–7895.

    Article  Google Scholar 

  24. GARCIA A, ELSASSER C, ZHU J. Use of gradient-corrected functionals in total energy calculations for solids [J]. Physical Review B, 1992, 46(14): 9829–9832.

    Article  Google Scholar 

  25. ROSSO K M, RUSTAD J R, BYLASKA E J. The Cs/K exchange in muscovite interlayers: An ab initio treatment [J]. Clays and Clay Minerals, 2001, 49(6): 500–513.

    Article  Google Scholar 

  26. BICKMORE B R, ROSSO K M, NAGY K L. Ab intio determination of edge surface structures for dioctahedral 2:1 phyllosilicates: Implications for acid-base reactivity [J]. Clays and Clay Minerals, 2003, 51(4): 359–371.

    Article  Google Scholar 

  27. FRISH M J, TRUCKS G W, SCHLEGEL H B. Gaussian 03, G03RevB.01 [M]. Pennsylvania: Gaussian Inc, 2003.

    Google Scholar 

  28. NEDER R B, BURGHAMMER M, GRASL T. Refinement of the kaolinite structure from single-crystal synchrotron data [J]. Clays and Clay Minerals, 1999, 47(4): 487–494.

    Article  Google Scholar 

  29. HU Yue-hua, LIU Xiao-wen, XU Zheng-he. Role of crystal structure in flotation separation of diaspore from kaolinite, pyrophyllite and illite [J]. Minerals Engineering, 2003, 16(3): 219–227.

    Article  Google Scholar 

  30. NWEMAN A C D. Chemistry of clays and clay minerals [R]. London: Longman Group UK Limited, 1987.

    Google Scholar 

  31. XU Z H, PITT V, LIU Q. Recent advances in reverse flotation of diasporic ores-A Chinese experience [J]. Minerals Engineering, 2004, 17(9/10): 1007–1015.

    Article  Google Scholar 

  32. LEE L T, SOMASUNDARN P. Adsorption of polyacrylamide on oxide minerals [J]. Langmuir, 1989, 5(3): 854–860.

    Article  Google Scholar 

  33. ZHAO Shi-min, WANG Dian-zuo, HU Yue-hua. The flotation behavior of N-(3-aminopropyl)-dodecanamide on three aluminosilicates [J]. Minerals Engineering, 2003, 16(12):1391–1395.

    Article  Google Scholar 

  34. MPOFU P, MENSAH J A, RALSTON J. Investigation of the effect of polymer structure type on flocculation, rheology and dewatering behaviour of kaolinite dispersions [J]. International Journal of Mineral Processing, 2003, 71(1): 247–268.

    Article  Google Scholar 

  35. JIANG Hao, HU Yue-hua, QIN Wen-qing, WANG Yu-hua, WANG Dian-zuo. Mechanism of flotation for diaspore and aluminum-silicate minerals with alkylamine collectors [J]. Chinese Journal of Nonferrous Metals, 2001, 11(4): 688–692. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhong  (钟宏).

Additional information

Foundation item: Project(2005CB623701) supported by the Major State Basic Research and Development Program of China; Project(50874118) supported by the National Nature Science Foundation of China; Project(2007B52) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, Ly., Zhong, H., Liu, Gy. et al. Electron bandstructure of kaolinite and its mechanism of flotation using dodecylamine as collector. J. Cent. South Univ. Technol. 16, 73–79 (2009). https://doi.org/10.1007/s11771-009-0012-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-009-0012-8

Key words

Navigation