Skip to main content
Log in

Electrical conductivity of (Na3AlF6-40%K3AlF6)-AlF3-Al2O3 melts

  • Published:
Journal of Central South University of Technology Aims and scope Submit manuscript

Abstract

The effects of contents of AlF3 and Al2O3, and temperature on electrical conductivity of (Na3AlF6-40%K3AlF6)-AlF3-Al2O3 were studied by continuously varying cell constant (CVCC) technique. The results show that the conductivities of melts increase with the increase of temperature, but by different extents. Every increasing 10 °C results in an increase of 1.85×10−2, 1.86×10−2, 1.89×10−2 and 2.20×10−2 S/cm in conductivity for the (Na3AlF6-40%K3AlF6)-AlF3 melts containing 0%, 20%, 24%, and 30% AlF3, respectively. An increase of every 10 °C in temperature results an increase about 1.89×10−2, 1.94×10−2, 1.95×10−2, 1.99×10−2 and 2.10×10−2 S/cm for (Na3AlF6-40%K3AlF6)-AlF3-Al2O3 melts containing 0%, 1%, 2%, 3% and 4% Al2O3, respectively. The activation energy of conductance was calculated based on Arrhenius equation. Every increasing 1% of AlF3 results in a decrease of 0.019 and 0.020 S/cm in conductivity for (Na3AlF6-40%K3AlF6)-AlF3 melts at 900 and 1 000 °C, respectively. Every increase of 1% Al2O3 results in a decrease of 0.07 S/cm in conductivity for (Na3AlF6-40%K3AlF6)-AlF3-Al2O3 melts. The activation energy of conductance increases with the increase in content of AlF3 and Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. JIANHONG Y, GRACZYK D G, WUNSCH C, HRYN J N. Alumina solubility in KF-AlF3-based low-temperature electrolyte system [C]// WONBONG C. Light Metals. Orlando: TMS, 2007: 537–541.

    Google Scholar 

  2. REDKIN A, TKATCHEVA O, ZAIKOV Y, ZAIKOV Y, APISAROV A. Modeling of cryolite-alumina melts properties and experimental investigation of low melting electrolytes [C]// SORLIE M. Light Metals. Orlando: TMS, 2007: 513–517.

    Google Scholar 

  3. YANG J, HRYN J N, KRUMDICK G K. Aluminum electrolysis tests with inert anodes in KF-AlF3-based electrolytes [C]// GALLOWAY T. Light Metals. San Antonio: TMS, 2006: 421–424.

    Google Scholar 

  4. YANG J, HRYN J N, DAVIS B R, ROY A, KRUMDICK G K, POMYKALA J J. New opportunities for aluminum electrolysis with metal anodes in a low temperature electrolyte system [C]// TABEREAUX A T. Light Metals. Carlotte: TMS, 2004: 321–326.

    Google Scholar 

  5. REN Bi-jun, SHI Zhong-ning, LIU Shi-ying, QIU Zhu-xian. Deterioration mechanism of cathode in 300 kA prebaked anode aluminum reduction cells [J]. Journal of Northeastern University: Natural Science, 2007, 28(6): 843–846. (in Chinese)

    Google Scholar 

  6. LIU Shi-ying, SHI Zhong-ning, QIU Zhu-xian, REN Bi-jun, CAO Quan-hong. Sludge formation and analysis in aluminium reduction cells [J]. Light Metals, 2006(7): 34–36. (in Chinese)

  7. HIVES J, THONSTAD J. Electrical conductivity of low-melting electrolytes for aluminium smelting [J]. Electrochimica Acta, 2004, 49(28): 5111–5114.

    Article  Google Scholar 

  8. KRYUKOVSKY V A, FROLOV A V, TKATCHEVA O Y, REDKIN A A, ZAIKOV Y P, KHOKHLOV V A, APISAROV A P. Electrical conductivity of low melting cryolite melts [C]// GALLOWAY T J. Light Metals. San Antonio: TMS, 2006: 409–413.

    Google Scholar 

  9. WANG J, LAI Y, TIAN Z, LI J, LIU Y. Investigation of 5Cu-(10NiO-NiFe2O4) inert anode corrosion during low-temperature aluminum electrolysis [C]// SORLIE M. Light Metals. Orlando: TMS, 2007: 525–530.

    Google Scholar 

  10. ZAIKOV Y, CHUIKIN A, REDKIN A, KHRAMOV A, SHUROV N, CHEMEZOV O, KRYUKOVSKII V. Interaction of heat resistance concrete with low melting electrolyte KF-AlF3(CR=1.3) [C]// SORLIE M. Light Metals. Orlando: TMS, 2007: 369–372.

    Google Scholar 

  11. WANG Jia-wei, LAI Yan-qing, TIAN Zhong-liang, LIU Ye-xiang. Effect of electrolysis superheat degree on anticorrosion performance of 5Cu/(10NiO-NiFe2O4) cermet inert anode [J]. Journal of Central South University of Technology, 2007, 14(6): 768–772.

    Article  Google Scholar 

  12. LAI Yan-qing, TIAN Zhong-liang, LI Jie, YE Shao-long, LI Xian-zheng, LIU Ye-xiang. Results from 100 h electrolysis testing of NiFe2O4 based cermet as inert anode in aluminum reduction [J]. Trans Nonferrous Met Soc China, 2006, 16(4): 970–974.

    Article  Google Scholar 

  13. WANG J, LAI Y, TIAN Z, LI J, LIU Y. Temperature of primary crystallization in party of system Na3AlF6-K3AlF6-AlF3 [C]// DEYOUNG D. Light Metals. New Orleans: TMS, 2008: 513–518.

    Google Scholar 

  14. QIU Zhu-xian. Aluminum smelting in pre-baked cell [M]. Beijing: Metallurgical Industry Press, 2005: 286. (in Chinese)

    Google Scholar 

  15. KEMPKES M, MEIER W. New concept for a green anode plant [C]// DEYOUNG D. Light Metals. New Orleans: TMS, 2008: 919–922.

    Google Scholar 

  16. TANDON S C, PRASAD R N. Energy saving in hindalco’s aluminium smelter [C]// KVANDE H. Light Metals. San Francisco: TMS, 2005: 303–309.

    Google Scholar 

  17. LU H, YU L. Technique and mechanism of aluminum floating electrolysis in molten heavy Na3AlF6-AlF3-BaF2-CaF2 bath system [C]// CREPEAU D P. Light Metals. San Diego: TMS, 2003:351–356.

    Google Scholar 

  18. WOJAKOWSKA A, PLINSKA S, JOSIAK J, KRZYZAK E. Electrical conductivity of molten cobalt dibromide + potassium bromide mixtures [J]. Journal of Chemical and Engineering Data, 2006, 51(4): 1256–1260.

    Article  Google Scholar 

  19. KIM K B, SADOWAY D R. Electrical conductivity measurements of molten alkaline-earth fluorides [J]. Journal of the Electrochemical Society, 1992, 139(4): 1027–1033.

    Article  Google Scholar 

  20. WANG X, PETERSON R D, TABEREAUX A T. Electrical conductivity of cryolitic melts [C]// CUGSHALL E R. Light Metals. San Diego: TMS, 1992: 481–488.

    Google Scholar 

  21. GILBERT B, ROBERT E, TIXHON E, OLSEN J E, OSTVOLD T. Acid-base properties of cryolite based melts with, CaF2, MgF2 and Al2O3 additions: A comparison between Raman and vapour pressure measurements [C]// EVANS J W. Light Metals. Las Vegas: TMS, 1995: 181–194.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-guo Huang  (黄有国).

Additional information

Foundation item: Project(2005CB623703) supported by the Major State Basic Research and Development Program of China; Project(2008AA030503) supported by the National High-Tech Research and Development Program of China; Project(GUIKEJI 0639032) supported by Applied Basic Research in Guangxi Province, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Yg., Lai, Yq., Tian, Zl. et al. Electrical conductivity of (Na3AlF6-40%K3AlF6)-AlF3-Al2O3 melts. J. Cent. South Univ. Technol. 15, 819–823 (2008). https://doi.org/10.1007/s11771-008-0151-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-008-0151-3

Key words

Navigation