BAKER B J, BANFIELD J F. Microbial communities in acid mine drainage[J]. FEMS Microbiology Ecology, 2003, 44(2): 139–152.
Article
Google Scholar
PIVOVAROVA T A, MARKOSYAN G E, KARAVAIKO G I. The auxotrophic growth of Leptospirillum ferrooxidans[J]. Microbiology, 1981, 50(1): 339–344.
Google Scholar
HIPPE H. Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. 1992) [J]. Int J Syst Evol Microbiol, 2000, 50(5): 501–503.
Article
Google Scholar
DRUSCHEL G K, BAKER B J, GIHRING T, et al. Acid mine drainage biogeochemistry at Iron Mountain California [J]. Eochem Trans, 2004, 5(2): 13–17.
Google Scholar
RAWLINGS D E, SILVER S. Mining with microbes[J]. Bio/Technology, 1995, 13(2): 773–778.
Article
Google Scholar
NICOLETTE J C, RAWLINGS D E. Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates south african commercial biooxidation tanks that operate at 40 °C [J]. Appl Environ Microbiol, 2002, 68(1): 838–845.
Google Scholar
RAWLINGS D E. Restriction enzyme analysis of 16S rRNA genes for the rapid identification of Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Leptospirillum ferrooxidans strains in leaching environments[C]// JEREZ C A, VARGAS T, TOLEDO H, et al. Biohydrometallurgical Processing, vol. II. Santiago: University of Chile Press, 1995: 9–17
Google Scholar
RAWLINGS D E, CORAM N J, GARDNER M N, et al. Thiobacillus caldus and Leptospirillum ferrooxidans are widely distributed in continuous flow biooxidation tanks used to treat a variety of metal containing ores and concentrates[C]// AMILS R, BALLESTER A. Biohydrometallurgy and the Environment: toward the Mining of the 21st Century, Part A. Amsterdam: Elsevier, 1999: 777–786.
Google Scholar
RAWLINGS D E, TRIBUTSCH H, HANSFORD G S. Reasons why ‘Leptospirillum’-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for biooxidation of pyrite and related ores[J]. Microbiology, 1999, 145(3): 5–13.
Article
Google Scholar
JOHNSON D B. Selective solid media for isolating and enumerating acidophilic bacteria[J]. Journal of Microbiological Methods, 1995, 23(2): 205–218.
Article
Google Scholar
TUOVINEN O H, KELLY D P. Studies on the growth of Thiobacillus ferrooxidans use of membrane filters and ferrous iron agar to determine viable numbers and comparison with 14CO2-fixation and iron-oxidation as measures of growth[J]. Arch Mikroboil, 1973, 88(10): 285–298.
Article
Google Scholar
JOHNSON D B, MCGINNESS S. A highly efficient and universal solid medium for growing mesophilic and moderately thermophilic, iron-oxidizing, acidophilic bacteria[J]. Microbiol Mehods, 1991, 13(7): 113–122.
Google Scholar
HARRISON J. A P. The acidophilic thiobacilli and other acidophilic bacteria that share their habitat[J]. Ann Rev Microbial, 1984, 38(2): 265–292.
Article
Google Scholar
LIU Ying, LIU Xiang-mei, TIAN Ke-li. Growth and morphology of Leptospirillum ferrooxidans on solid medium[J]. Microbiology, 2003, 30(6): 70–72. (in Chinese)
Google Scholar
LIU Ying, QI Fang-jun, LIU Xiang-mei. Phylogenetic analysis for 16S rDNA sequence of the vibrio shaped chemoautolithotrophic iron-oxidizing bacterium ML-04[J]. Journal of Shandon University, 2004, 39(5): 112–115. (in Chinese)
Google Scholar
ZHOU J, BRUNS M A, TIEDJE J M. DNA recovery from soils of diverse composition[J]. Appl Environ Microbiol, 1996, 62(2): 316–322.
Google Scholar
LANE D J. 16S/23S rRNA sequencing[C]// STACKEBRANDT E, GOODFELLOW M. Nucleic Acid Techniques in Bacterial Systematics. Chichester: John Wiley & Sons, 1991: 115–175.
Google Scholar
ZHANG Zai-hai, QIU Guan-zhou, HU Yue-hua, et al. The investigation of the colony isolation of thiobacillus fenooxidans[J]. Multipurpose Utilization of Mineral Resources, 2001, (1): 19–23. (in Chinese)
SAND W, ROHDE K, SOBOTKE B, et al. Evaluation of Leptospirillum ferrooxidans for leaching[J]. Appl Environ Microbiol, 1992, 58(1): 85–92.
Google Scholar