Skip to main content
Log in

Electrochemical properties of vanadium pentoxide xerogel films

  • Published:
Journal of Central South University of Technology Aims and scope Submit manuscript

Abstract

Vanadium pentoxide xerogel (VXG) films were prepared by rapid quenching, then coin type 2016 size lithium rechargeable batteries were assembled and tested with the VXG film electrodes and lithium anodes. Electrochemical impedance spectroscopy (EIS) analysis result reveals the expected response for intercalation, except that there is almost no Warburg (diffusion) component. Analyses results of cyclic voltammetry (CV), constant discharge (CD) and discharge-charge(DC) indicate that the sample achieves a high initial discharge specific capacity of approximate 400 mA · h/g and a corresponding efficiency of 97 % in the voltage diapason of 1.5–4.0 V with a draining current of 60 mA/g. Its preservation ratio of capacity still keeps as high as 85 % even after 100 cycles. The good electrochemical performance indicates that VXG film material is a promising cathode for lithium rechargeable batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bates J B, Dudney N J, Gruzalski G R, et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries[J]. J Power Sources, 1993, 43(1–3): 103.

    Article  Google Scholar 

  2. Cohen Y S, Aurbach D. Surface films phenomena on vanadium-pentoxide cathodes for Li and Li-ion batteries: in situ AFM imaging[J]. Electrochem Commun, 2004, 6(6): 536–542.

    Article  Google Scholar 

  3. Wang Y W, Xub H Y, Wang H, et al. Solvothermal synthesis and characterization of γ-LiV2O5 nanorods [J]. Solid State Ionics, 2004, 167(3–4): 419–424.

    Article  Google Scholar 

  4. Kima Y T, Gopukumara S, Kima K B. Performance of electrostatic spray-deposited vanadium pentoxide in lithium secondary cells[J]. J Power Sources, 2003, 117(1–2): 110–117.

    Article  Google Scholar 

  5. Mossa P L, Fub R, Auc G, et al. Investigation of cycle life of Li-LixV2O5 rechargeable batteries [J]. J Power Sources, 2003, 124(1): 261–265.

    Article  Google Scholar 

  6. McGraw J M, Perkins J D, Zhang J-G, et al. Next generation V2O5 cathode materials for Li rechargeable batteries[J]. Solid State Ionics, 1998, 113–115: 408.

    Google Scholar 

  7. Chung S K, Chmilenko N A, Borovykov A Ya, et al. Rechargeable lithium cells with modified vanadium oxide cathodes[J]. J Power Sources, 1999, 84(1): 6.

    Article  Google Scholar 

  8. Benmoussa M, Outzourhit A, Bennouna A, et al. Electrochromism in sputtered V2O5 thin films: structural and optical studies[J]. Thin Solid Films, 2002, 405(1–2): 12.

    Google Scholar 

  9. Koike S, Fujieda T, Sakai T, et al. Characterization of sputtered vanadium oxide films for lithium batteries [J]. J Power Sources, 1999, 81–82: 581.

    Article  Google Scholar 

  10. Rajendra Kumar R T, Karunagaran B, Senthil Kumar V, et al. Structural properties of V2O5 thin films prepared by vacuum evaporation[J]. Mat Sci Semicon Proc, 2003, 6(5–6): 544.

    Google Scholar 

  11. Kim Y T, Gopukumar S, Kim K B, et al. Performance of electrostatic spray-deposited vanadium pentoxide in lithium secondary cells [J]. J Power Sources, 2003, 117(1–2): 111.

    Google Scholar 

  12. Viswanathamurthi P, Bhattarai N, Kim H Y, et al. Vanadium pentoxide nanofibers by electrospinning [J]. Scripta Mater, 2003, 49(6): 578.

    Article  Google Scholar 

  13. Park S J, Ha J S, Chang Y J, et al. Time dependent evolution of vanadium pentoxide nanowires in sols [J]. Chem Phys Lett, 2004, 390(1–3): 199.

    Article  Google Scholar 

  14. Zampronio E C, Greggio D N, Oliveira H P. Preparation, characterization and properties of PVC/V2O5 hybrid organic-inorganic material[J]. J Non-cryst Solids, 2003, 332(1–3): 250.

    Google Scholar 

  15. Vivier V, Belair S, Cachet-Vivier C, et al. A rapid evaluation of vanadium oxide and manganese oxide as battery materials with a micro-electrochemistry technique[J]. J Power Sources, 2001, 103(1): 62.

    Article  Google Scholar 

  16. Anaissi F J, Demets G J F, Toma H E. Electrochemical conditioning of vanadium (V) pentoxide xerogel films[J]. Electrochem Commun, 1999, 1(8): 332.

    Article  Google Scholar 

  17. Cohen Y S, Aurbach D. Surface films phenomena on vanadium-pentoxide cathodes for Li and Li-ion batteries: in situ AFM imaging[J]. Electrochem Commun, 2004, 6(6): 540.

    Article  Google Scholar 

  18. Farcy J, Messina R, Perichon J. Kinetic study of the lithium electroinsertion In V2O5 by Impedance spectroscopy[J]. J Electrochem Soc, 1990, 137(5): 1337.

    Article  Google Scholar 

  19. Vivier V, Farcy J, Pereira-Ramos J P. Electrochemical lithium insertion in sol-gel crystalline vanadium pentoxide thin films[J]. Electrochim Acta, 1998, 44(5): 834.

    Article  Google Scholar 

  20. Delmas C, Cognac-Auradou H, Cocciantelli J M, et al. The LixV2O5 system: An overview of the structure modifications induced by the lithium intercalation [J]. Solid State Ionics, 1994, 69(3–4): 257.

    Article  Google Scholar 

  21. Cocciantelli J M, Menetrier M, Delmas C, et al. On the δ→γ irreversible transformation in Li/V2O5 secondary batteries[J]. Solid State Ionics, 1995, 78(1–2): 143.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Yong PhD.

Additional information

Foundation item: Project (20034097) supported by the Key Programs Foundation of Science and Technology of Guangdong Province

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Hu, Xg., Liu, Yw. et al. Electrochemical properties of vanadium pentoxide xerogel films. J Cent. South Univ. Technol. 12, 561–566 (2005). https://doi.org/10.1007/s11771-005-0123-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-005-0123-9

Key words

CLC number

Navigation