Skip to main content
Log in

Crystallization kinetics of amorphous Nd3.6Pr5.4Fe83Co3B5 and preparation of α-Fe/Nd2Fe14B nanocomposite magnets by controlled melt-solidification technique

  • Published:
Journal of Central South University of Technology Aims and scope Submit manuscript

Abstract

The crystallization kinetics of amorphous Nd3.6Pr5.4Fe83Co3B5 and the preparation of α-Fe/Nd2Fe14 B nanocomposite magnets by controlled melt-solidification of Nd3.6Pr5.4Fe83Co3B5 was investigated by employing DTA, XRD, and TEM. The results show that a metastable intermediate phase Nd8Fe27B24 prior to α-Fe and Nd2Fe14B phases is crystallized as the amorphous Nd3.6Pr5.4Fe83Co3B5 is heated to 1 223 K. The crystallization activation energy of α-Fe and Nd8Fe27B24 phases is larger at the beginning stage of crystallization, and then it decreases with crystallized fraction x for the former and has little change when x is below 70% for the latter, which essentially results in an α-Fe/Nd2Fe14B microstructure with a relatively coarse grain size about 20–60 nm and a non-uniform distribution of grain size in the annealed alloy. The α-Fe/Nd2Fe14B nanocomposite magnets with a small average grain size about 14 nm and a quite uniform grain size distribution were prepared by controlled melt-solidification of Nd3.6Pr5.4Fe83Co3B5 at a wheel speed of 20 m · s−1 during melt-spinning. The magnets show a high maximum energy product of (BH)max=194 kJ · m−3, which is nearly twice of that of the nanocomposite magnets made by annealing the amorphous Nd3.6Pr5.4Fe83Co3B5 precursor alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kneller E F, Hawig R. The exchange-spring magnet: a new materials principle permanent magnets [J]. IEEE Trans Magn, 1991, 27(4): 3560–3588.

    Article  Google Scholar 

  2. Skomski R, Coey J M D. Giant energy product in nanostructured two-phase magnets[J]. Phys Rev B, 1993, 48(21): 15812–15816.

    Article  Google Scholar 

  3. ZHANG X Y, ZHANG J W, WANG W K. Crystallization kinetics and phase transition under high-pressure of amorphous Sm8Fe85 Si2C5 alloy[J]. Acta Mater, 2001, 49(15): 3889–3897.

    Article  Google Scholar 

  4. CHANG W C, Chiou D Y, WU S H, et al. High performance α-Fe/ Nd2Fe14B-type nanocomposites [J]. Appl Phys Lett, 1998, 72(1): 121–123.

    Article  Google Scholar 

  5. McCormick P G, Miao W F, Smith P A I, et al. Mechanically alloyed nanocomposite magnets(invited)[J]. J Appl Phys, 1998, 83(11): 6256–6261.

    Article  Google Scholar 

  6. Withanawasam L, Murthy A S, Hadjipanayis G C. Hysteresis behavior and microstructure of exchange couple R2Fe14B/α-Fe magnets[J]. IEEE Trans Magn, 1995, 31(6): 3608–3610.

    Article  Google Scholar 

  7. Fischer R, Schrefl T, Kronmüller H, et al. Grain-size dependence and coercive field of isotropic nanocrystalline composite permanent magnets[J]. J Magn Magn Mater, 1996, 153(1): 35–49.

    Article  Google Scholar 

  8. Hadjipanayis G C. Nanophase hard magnets [J]. J Magn Magn Mater, 1999, 200(2): 373–391.

    Article  Google Scholar 

  9. Schrefl T, Fidler J, Kronmüller H. Remanece and coercivity in isotropic nanocrystalline permanent magnets[J]. Phys Rev B, 1994, 49(9): 6100–6110.

    Article  Google Scholar 

  10. ZHANG X Y, GUAN Y, ZHANG J W. Study of interface structure of α-Fe/Nd2Fe14B nanocomposite magnets[J]. Appl Phys Lett, 2002, 80(11): 1966–1968.

    Article  Google Scholar 

  11. ZHANG X Y, GUAN Y, YANG L, et al. Crystallographic texture and magnetic anisotropy of α-Fe/Nd2Fe14B nanocomposites prepared by controlled melt spinning[J]. Appl Phys Lett, 2001, 79(15): 2426–2428.

    Article  Google Scholar 

  12. ZHANG X Y, ZHANG J W, WANG W K, et al. Microstructure and magnetic properties of Sm2(Fe, Si)17C x /α-Fe nanocomposite magnets prepared under high pressure [J]. Appl Phys Lett, 1999, 74(4): 597–599.

    Article  Google Scholar 

  13. ZHANG X Y, ZHANG J W, WANG W K. A novel route for the preparation of nanocomposite magnets[J]. Advanced Materials, 2000, 12(19): 1441–1444.

    Article  Google Scholar 

  14. ZHANG X Y, GUAN Y, ZHANG J W, et al. Evolution of interface structure of nanocomposites prepared by crystallization of amorphous alloy[J]. Phys Rev B, 2002, 66: 212103–212106.

    Article  Google Scholar 

  15. ZHANG X Y, GUAN Y, ZHANG J W. Interfacial structure in α-Fe/Sm2 (Fe, Si)17Cx nanocomposites prepared by crystallization of amorphous alloy[J]. J Appl Phys, 2002, 92(11): 6933–6935.

    Article  Google Scholar 

  16. ZHANG H Y, Mitchell B S. A method for determing crystallization kinetic parameters from one nonisothemal calorimetric experiment[J]. J Mater Res, 2000, 15(4): 1000–1007.

    Article  Google Scholar 

  17. Schroers J, Wu Y, Busch R, et al. Transition from nucleation controlled to growth controlled crystallization in Pd43Ni10Cu27P20 melts[J]. Acta Mater, 2001, 49(14): 2773–2781.

    Article  Google Scholar 

  18. Glade S C, Löffler J F, Bossuyt S, et al. Crystallization of amorphous Cu47Ti34Zr11Ni8[J]. J Appl Phys, 2001, 89(3): 1573–1579.

    Article  Google Scholar 

  19. ZHANG J W, ZHANG X Y, XIAO F R, et al. Influences of additive elements Nb and Mo on the crystallization process of amorphous alloy Fe76.5Cu1Si13.5B9[J]. Materials Letters, 1998, 36(4): 223–228.

    Article  Google Scholar 

  20. Chang I T H. Handbook of Nanostructured Materials and Nanotechnology (Volume 1): Synthesis and Processing. London: Academic Press, 1999.

    Google Scholar 

  21. Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Anal Chem, 1957, 29(11): 1702–1706.

    Article  Google Scholar 

  22. Doyle C D. Kinetic analysis of thermogravimetric data[J]. J Appl Polym Sci, 1961, 5(15): 285–292.

    Article  Google Scholar 

  23. Yoshizawa Y, Oguma S, Yamauchi K. New Fe-based soft magnetic alloys composed of ultrafine grain structure[J]. J Appl Phys, 1988, 64(10): 6044–6046.

    Article  Google Scholar 

  24. ZHANG H W, SUN Z G, ZHANG S Y, et al. Intergrain exchange coupling and coercivity mechanism of nanocrystalline Sm2Fe15−x Cu x Si2C (x=0 and 1) ribbons prepared by melt spinning[J]. Phys Rev B, 1999, 60(1): 64–67.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Li Doctoral candidate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Shang, Y. Crystallization kinetics of amorphous Nd3.6Pr5.4Fe83Co3B5 and preparation of α-Fe/Nd2Fe14B nanocomposite magnets by controlled melt-solidification technique. J Cent. South Univ. Technol. 10, 280–286 (2003). https://doi.org/10.1007/s11771-003-0024-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-003-0024-8

Key words

CLC number

Navigation