Skip to main content
Log in

Characterization of pyrolytic properties of pyrite in the terahertz frequency band

  • Published:
Applied Geophysics Aims and scope Submit manuscript

Abstract

A systematic terahertz spectroscopy study of the mineral phase transformation process of natural pyrite samples heated in a nitrogen atmosphere is conducted. In addition, the pyrolysis process of pyrite in the 400 °C–800 °C temperature range is analyzed and discussed. This study is based on X-ray diffraction (XRD) and thermogravimetric-derivative thermogravimetric (TG-DTG) analysis of the corresponding thermal transformation sequences of pyrite, magnetopyrite, and sulfurous pyrite as the desulfurization process proceeds. Terahertz time-domain spectroscopy is employed to characterize the optical properties of the pyrolysis products. The results show that pyrite, magnetopyrite and sulfurous pyrite exhibit different absorption coefficients and refractive indices in the terahertz frequency band. The different optical properties of these products provide useful information for the investigation of the pyrolysis process of pyrite and the magnetic properties of environmental sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amarasinghe, Y., Zhang, W., and Zhang, R., et al, 2020, Scattering of Terahertz Waves by Snow: J Infrared Milli Terahz Waves, 41, 215–224.

    Article  Google Scholar 

  • Bao, R. M., Meng Q., Wang, C. L., Cai, T. Y., Dong, C., Zhan, H. L., Miao, X. Y., Feng, C. J., Zhang, L.Y., and Xiao, L. Z., 2015, Terahertz spectroscopic characteristics of the geological diagenetic and metallogenic evolution: Scientia sinica. 45, 084203.

    Google Scholar 

  • Bao, R. M., Qin, F. K., Chen, R., Chen, S. T., Zhan, H. L., Zhao, K., and Yue, W. Z., 2019, Optical detection of oil bearing in reservoir rock: Terahertz spectroscopy investigation: IEEE Access. 7, 121755–121759.

    Google Scholar 

  • Bhargava, S. K., Garg, A., and Subasinghe, N. D., 2009, In situ high-temperature phase transformation studies on pyrite: Fuel, 88, 988–993.

    Article  CAS  Google Scholar 

  • Chen, C., Liu, J. S., Yao, J. Q., Wang, S. L., and Wang, Y. G., 2015, Spectroscopy studies on several kinds of sendimentary rocks in the terahertz range: Scientia sinica, 45, 084206.

    Google Scholar 

  • Chinchón-Payá, S., Aguado, A., Chinchón S., 2012, A comparative investigation of the degradation of pyrite and pyrrhotite under simulated laboratory conditions: Engineering Geology. 127, 75–80.

    Article  Google Scholar 

  • Hao, S. S., Huang, H. H., Ma, Y. Y., Liu, S. J., Zhang, Z. L., and Zheng, Z. Z., 2020, Sensitive characterizations of natural dolomite by terahertz time-domain spectroscopy: Optics Communications. 456, 124524.

    Article  CAS  Google Scholar 

  • Huang, H., et al., 2019, Continuous-wave terahertz high-resolution imaging via synthetic hologram extrapolation method using pyroelectric detector: Opt. Laser Technol, 120, 105683.

    Article  CAS  Google Scholar 

  • Huang, H., et al., 2023, Spozmai Panezai;Kunfeng Qiu. Free Field of View Infrared Digital Holography for Mineral Crystallization. Crystal Growth & Design, 23, 7992–8008.

    CAS  Google Scholar 

  • Jin W. J., Zhao K., Yang C., Xu C. H., Ni H., Chen S. H., 2013, Experimental measurements of water content in crude oil emulsions by terahertz time-domain spectroscopy: Applied Geophysics, 513, 506–509.

    Article  Google Scholar 

  • Kim, S., Park, T., and Lee, W., 2015, Enhanced reductive dechlorination of tetrachloroethene by nano-sized mackinawite with cyanocobalamin in a highly alkaline condition: Journal of Environmental Management. 151, 378–385.

    Article  CAS  Google Scholar 

  • Leili, A. H., Elnaz, A., Arash, T., Taymaz, H., Azar, A., and Reza, E, 2020, Terahertz spectroscopy and imaging: A review on agricultural applications: Computers & Electronics in Agriculture, 177, 105628.

    Google Scholar 

  • Li, H. Y., Zhang, S. H., 2005, Detection of mineralogical changes in pyrite using measurements of temperature-dependence susceptibilities, Chinese J. Geophys. (in Chinese), 48, 1384–1391.

    CAS  Google Scholar 

  • Li, X. N., Tong, W. S., and Song, W. T., et al, 2023, Performance of tribocatalysis and tribo-photocatalysis of pyrite under agitation: Journal of Cleaner Production. 414, 137566.

    Article  Google Scholar 

  • Li, Y. B., Peng, Y., and Wei, Z. L., 2023, Crystal face-dependent pyrite oxidation: An electrochemical study: Applied Surface Science, 619, 156687.

    CAS  Google Scholar 

  • Liu, H. B., Zhong, H., Karpowicz, N., Chen, Y. Q., and Zhang, X. C., 2008, Terahertz spectroscopy and imaging for defense and security applications: Proceedings of the IEEE, 95, 1514–1527.

    Article  Google Scholar 

  • Liu, J., Yang, T., Peng, Q., Yang, Y., Li, Y. W., and Wen, X.D., 2021, Theoretical exploration of the interaction between hydrogen and pyrite-type FeS2 surfaces: Applied Surface Science, 537, 147900.

    Article  CAS  Google Scholar 

  • Lu, W., Luo, H., He, L. X., Duan, E. X., Tao, Y. L., Wang, X. Y., and Li, S.S., 2022, Detection of heavy metals in vegetable soil based on THz spectroscopy: Computers and Electronics in Agriculture. 197, 106923.

    Article  Google Scholar 

  • Ma, Y. Y., et al., Characteristics of the lapis chloriti analyzed by the terahertz time-domain technology. in Tenth International Conference on Information Optics and Photonics (ed. Yang, Y.) 41 (SPIE, 2018).

  • Mie, G., 1908, Beitrage zur Optik trüber Medien, speziell kolloidaler Metall’osungen, Ann. Phys.-Berlin, 330, 377–445.

    Article  Google Scholar 

  • Mu, Y., Peng, Y., and Lauten, R. A., 2015, Electrochemistry aspects of pyrite in the presence of potassium amyl xanthate and a lignosulfonate-based biopolymer depressant: Electrochimica Acta, 174, 133–142.

    Article  CAS  Google Scholar 

  • Rayleigh, L., 1871, On the light from the sky, its polarization and colour, Phil. Mag, 41, 107–120.

    Google Scholar 

  • Ren, G. H., Zhu, Z. J., Zhang, J. B., Zhao, H. W., Li, Y. F., and Han, J.G., 2020, Broadband terahertz spectroscopy of paper and banknotes: Optics Communications, 475, 126267.

    Article  CAS  Google Scholar 

  • Roberts, A. P., Liu Q., Rowan C. J., et al, 2006, Characterization of hematite(α-Fe2O3), goethite(α-FeOOH), greigite(Fe3S4), and pyrrhotite(Fe7S8) using first-order reversal curve diagrams: J Geophys Res, 111, B12S35.

    Google Scholar 

  • Schill, E., Appel, E., Gautam, P., 2002, Towards pyrrhotite/magnetite geothermometry in low-grade metamorphic carbonates of the Tethyan Himalayas (Shiar Khola, Central Nepal), Journal of Asian Earth Sciences, 20, 195–201.

    Article  Google Scholar 

  • Shi, C. D., Zhu R. X., Suchy, V., Zeman, A., Guo, B., and Pan, Y. X., 2001, Identification and origins of iron sulfides in Czech loess: Geophysical Research Letters. 28, 3902–3906.

    Article  Google Scholar 

  • Shi, Y. D., Chen T. H., Li, P., Zhu, X., and Yang, Y., 2015, The phase transition of pyrite thermal decomposition in nitrogen gas: Geological Journal of China Universities, 21, 577–583.

    CAS  Google Scholar 

  • Snowball, I., and Torii, M., 1999, Quaternary Climates, Incidence and significance of magnetic iron sulphides in Quaternary sediments and soils: Quaternary Climates, Environments and Magnetism.

  • Song, W. M., Zhou, J. A., Wang, B., Li, S., and Han, J., 2020, New insight into investigation of reduction of desulfurization ash by pyrite for clean generation SO2: Journal of Cleaner Production. 253, 120026.

    Article  CAS  Google Scholar 

  • Uhlig, I., Szargan, R., and Nesbitt, H.W., et al, 2001, Surface states and reactivity of pyrite and marcasite: Applied Surface Science, 179, 222–229.

    Article  CAS  Google Scholar 

  • Velimirovic, M., and Larsson P. O., 2013, Queenie Simons, Leen Bastiaens, Reactivity screening of microscale zerovalent irons and iron sulfides towards different CAHs under standardized experimental conditions: Journal of Hazardous Materials. 252–253, 204–212.

    Article  Google Scholar 

  • Yin, X. X., Wadji, A. B., and Zhang Y. C., 2022, A Biomedical Perspective in Terahertz Nano-Communications-A Review: IEEE Sensors Journal. 22, 9215–9227.

    Article  CAS  Google Scholar 

  • Yu, J. J., Wang Y. Y., and Ding, J. J., et al, 2023, Broadband Photon-Assisted Terahertz Communication and Sensing: Journal of Lightwave Technology. 41, 1–17.

    Article  Google Scholar 

  • Zhan, H. L., Chen, R., Miao, X. Y., Li, Y. Z., Zhao, K., Hao, S. J., and Chen, X. H., 2018, Size effect on microparticle detection: IEEE Transaction on Terahertz Science and Technology, 8, 477–481.

    Article  CAS  Google Scholar 

  • Zhang, H. G., Liu, J., Kang, Z. Q., and Yang, D., 2018, Eperimental research of the pyrolytic properties and mineral components of bogda oil shale, China: Oil Shale. 35, 214–229.

    Article  CAS  Google Scholar 

  • Zhang, T., Huang, H. C., Zhang, Z. L., Gao H., Gao, L., and Zheng, Z. Y., 2021, Sensitive characterizations of polyvinyl chloride using terahertz time-domain spectroscopy: Infrared Physics & Technology, 118, 103878.

    Article  CAS  Google Scholar 

  • Zhao, H. L., and Qing Z., et al, 2015, Transformations of pyrite in different associations during pyrolysis of coal, Fuel Processing Technology. 131, 304–310.

    Article  CAS  Google Scholar 

  • Zunino, F., and Scrivener, K., 2022, Oxidation of pyrite (FeS2) and troilite (FeS) impurities in Kaolinitic clays after calcination: Materials and Structures, 55, 1–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Yuan Zheng or Hao-Chong Huang.

Additional information

This research is sponsored jointly by the National Natural Science Foundation of China (61805214), Open Fund of State Key Laboratory of Infrared Physics (SITP-NLIST-YB-2022-12), Piesat Information Technology remote sensing interdisciplinary research project (HTHT202202), the Fundamental Research Funds for the Central Universities (2-9-2022-203). Young Elite Scientists Sponsorship Program by Bast (BYESS2020037).

Zhang Tong is a PhD student at China University of Geosciences (Beijing). She graduated from Tianjin University of Technology and received a Bachelor’s degree in 2019 and received her Master’s degree from China University of Geosciences (Beijing) in 2022. Her primary research focus is on solving geologic phenomena using terahertz spectroscopy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Song, C., Zheng, ZY. et al. Characterization of pyrolytic properties of pyrite in the terahertz frequency band. Appl. Geophys. (2024). https://doi.org/10.1007/s11770-024-1067-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11770-024-1067-x

Keywords

Navigation