Abstract
The tight oil/gas reservoirs in China have showed the great exploration prospects and high production potential, with the characteristics of low porosity, low permeability, and significant heterogeneity in formation rocks. It remains a challenge to sort out the relations between reservoir wave responses and rock physical properties, and the further studies on the wave response patterns of tight reservoirs are in an urgent demand. The shear modulus and S- (shear) wave attenuation of rocks are affected by the properties of pore fluid and confining pressure. The ultrasonic wave experiments are performed on eight partially-saturated tight sandstone samples at different confining pressures, and we estimate S-wave attenuation with the spectral-ratio method. Results show that S-wave attenuation decreases with increasing confining pressure, and the water saturation case shows more loss compared to the oil saturation case, while the gas saturation case gives the lowest attenuation. We observe the S-wave relaxation peak at an intermediate water saturation for the gas-water partial-saturation case in general. S-wave attenuation increases with increasing porosity or permeability. Based on the measured rock physical properties, and combined with the Voigt–Reuss–Hill (VRH) average, differential effective medium (DEM) model and squirt-flow model, a tight rock attenuation model is proposed for analyzing the attenuation characteristics of fluid-saturated rocks at different confining pressures. The model reasonably describes the S-wave attenuation characteristics. The model predictions of S-wave attenuation show apparent pressure- and fluid-sensitivity at full saturation and partial saturation conditions. For sample TS1-19 at full saturation with different confining pressures, the S-wave peak attenuation predicted by the model ranges from 11.6 to 69.5, and decreases with confining pressure, while the relaxation frequency shifts to high frequency end. For the partial saturation condition of the sample, the predicted S-wave peak attenuation ranges from 15.5 to 39.8 at a confining pressure of 30 MPa and increases with water saturation, while the relaxation frequency shifts to low frequency end. For all the samples at 30MPa confining pressure, the predicted S-wave attenuation ranges from 5.6 to 38.6. At the full-saturation case, the predicted S-wave attenuation increases with porosity and decreases with confining pressure. For the partial saturation case, the S-wave attenuation predicted with the model and the Voigt and Reuss bounds generally increases with water saturation, whereas the experimentally-measured attenuation exhibits the peak attenuation at an intermediate saturation.
Similar content being viewed by others
References
Adam, L., Batzle, M., & Brevik, I. (2006). Gassmann’s fluid substitution and shear modulus variability in carbonates at laboratory seismic and ultrasonic frequencies. Geophysics, 71(6), F173–F183.
Ba, J., Zhang, L., Wang, D., Yuan, Z., Cheng, W., Ma, R. and Wu, C.F., 2018, Experimental analysis on P-wave attenuation in carbonate rocks and reservoir identification: Journal of Seismic Exploration, 27(3), 371–402.
Ba, J., Xu, W., Fu, L., Carcione, J. M., Zhang, L., 2017, Rock anelasticity due to patchy saturation and fabric heterogeneity: a double double-porosity model of wave propagation. J Geophys Res: Solid Earth, 122(3):1949–1976.
Ba, J., Pan, X., Carcione, J. M., and Ma, R., 2023, Effects of pressure and fluid properties on P-wave velocity and attenuation of tight sandstones. Front. Earth Sci, 10, 1065630.
Batzle, M. L., and Wang, Z., 1992, Seismic properties of pore fluids: Geophysics, 57, 1396–1408.
Bui, B. T., & Tutuncu, A. N., 2015, Effect of capillary condensation on geomechanical and acoustic properties of shale formations. Journal of Natural Gas Science and Engineering, 26, 1213–1221.
Baechle, G. T., Eberli, G. P., Weger, R. J., & Massaferro, J. L., 2009, Changes in dynamic shear moduli of carbonate rocks with fluid substitution. Geophysics, 74(3), E135–E147.
Blake, OO., Faulkner, DR., Bascombe, R., 2020, Using the Q factor to detect closed microfractures. Geophysics. Published online June, 19, MR285-MR295.
Berryman, J. G., 2007, Seismic waves in rocks with fluids and fractures: Geophysical Journal International, 171, 954–974.
Christensen, N. I., & Wang, H. F., 1985, The influence of pore pressure and confining pressure on dynamic elastic properties of Berea sandstone. Geophysics, 50(2), 207–213.
Clark, V. A., Tittmann, B. R., & Spencer, T. W., 1980, Effect of volatiles on attenuation (Q–1) and velocity in sedimentary rocks. Journal of Geophysical Research, 85(B10), 5190–5198.
Cadoret, T., 1993, Effet de la saturation eau-gaz sur les proprietes acoustiques des roches: Etude aux frequences sonores et ultrasonores (doctoral dissertation). University of Paris VII.
Cadoret, T., Mavko, G., Zinszner, B., 1998, Fluid distribution effect on sonic attenuation in partially saturated limestones. Geophysics, 63(1), 154–160.
Diethart-Jauk, E., & Gegenhuber, N., 2018, Shear weakening for different lithologies observed at different saturation stages. Journal of Applied Geophysics, 148, 107–114.
Dvorkin, J., Mavko, G., and Nur, A., 1995, Squirt flow in fully saturated rocks. Geophysics, 60, 97–107.
Dvorkin, J., Nur, A.,1993, Dynamic poroelasticity: a unified model with the squirt and the Biot mechanisms. Geophysics, 58(4):524–533.
Gassmann, F., 1951, Über die Elastizit€at poroser medien: Veirteljahrsschrift der Naturforschenden Gesellschaft in Zürich, vol. 96, pp. 1e23.
Guo, M. Q., Fu L. Y., Ba, J., 2009, Comparison of stress-associated coda attenuation and intrinsic attenuation from ultrasonic measurements, Geophysical Journal International, 178(1), 447–456.
Gurevich, B., Makarynska, D., de Paula OB., Pervukhina, M., 2010, A simple model for squirt-flow dispersion and attenuation in fluid-saturated granular rocks. Geophysics, 75(6), N109–N120.
Green, D. H., & Wang, H. F. (1994). Shear wave velocity and attenuation from pulse-echo studies of Berea sandstone. Journal of Geophysical Research, 99(B6), 11,755–11,763.
Han, D., Nur, A., & Morgan, D., 1986, Effects of porosity and clay content on wave velocities in sandstones. Geophysics, 51(11), 2093–2107.
Han, T., Liu, B., Sun, J., 2018, Validating the theoretical model for squirt-flow attenuation in fluid saturated porous rocks based on the dual porosity concept. Geophys J Int, 214(3):1800–1807.
Hill, R., 1952, The Elastic Behaviour of a Crystalline Aggregate: Proceedings of the Physical Society, 65(5), 349–354.
Johnson, K. L., Kendall, K., & Roberts, A. D., 1971, Surface energy and the contact of elastic solids. Proceedings of the Royal Society A, 324(1558), 301–313.
Khazanehdari, J., & Sothcott, J., 2003, Variation in dynamic elastic shear modulus of sandstone upon fluid saturation and substitution. Geophysics, 68(2), 472–481.
Li, X., Zhong, L., Pyrak-Nolte, L. J., 2001, Physics of partially saturated porous media: residual saturation and seismic-wave propagation. Annu Rev Earth Planet Sci, 29(1):419–460.
Li, G., 2020, S wave attenuation based on Stokes boundary layer. Geophys Prospect, 68(3):910–917.
Ma, R. P., Ba, J., Lebedev, M., Gurevich, B., Sun, Y. Y., 2021, Effect of pore fluid on ultrasonic S-wave attenuation in partially saturated tight rocks. Int J Rock Mech Min Sci, 147, 104910.
Mavko, G., Jizba, D., 1991, Estimating grain-scale fluid effects on velocity dispersion in rocks. Geophysics, 56(12):1940–1949.
Michalske, T. A., & Freiman, S. W., 1983, A molecular mechanism for stress corrosion in vitreous silica. Journal of the American Ceramic Society, 66(4), 284–288.
Mikhaltsevitch, V., Lebedev, M., & Gurevich, B, 2016, Laboratory measurements of the effect of fluid saturation on elastic properties of carbonates at seismic frequencies. Geophysical Prospecting, 64(4), 799–809.
Murphy, W. F., Winkler, K. W., & Kleinberg, R. L, 1984, Frame modulus weakening in sandstones: The effect of adsorption on surface energy. Geophysical Research Letters, 11(9), 805–808.
Murphy, W. F., Winkler, K. W., & Kleinberg, R. L., 1986, Acoustic relaxation in sedimentary rocks: Dependence on grain contacts and fluid saturation. Geophysics, 51(3), 757–766.
Müller, T. M., Gurevich, B., Lebedev, M., 2010, Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks — a review. Geophysics, 75(5):75A147–75A164.
Oh, T. M., Kwon, T. H., Cho, G. C., 2011, Effect of partial water saturation on attenuation characteristics of low porosity rocks. Rock Mech Rock Eng, 44(2):245–251.
Paterson, M. S., & Wong, T., 2005, Experimental rock deformation-the brittle field. Springer Science & Business Media.
Pimienta, L., Fortin, J., & Guéguen, Y., 2014, Investigation of elastic weakening in limestone and sandstone samples from moisture adsorption. Geophysical Journal International, 199(1), 335–347.
Quan, Y. L., and Harris, J. M., 1997, Seismic attenuation tomography using the frequency shift method, Geophysics, 62: 895–905.
Quintal, B., Steeb, H., Frehner, M., Schmalholz, S. M., Saenger, E. H., 2012, Pore fluid effects on S-wave attenuation caused by wave-induced fluid flowPore fluid effects on S-wave attenuation. Geophysics, 77(3), L13–L23.
Quintal, B., Jänicke, R., Rubino, J. G., Steeb, H., Holliger, K., 2014, Sensitivity of S-wave attenuation to the connectivity of fractures in fluid-saturated rocks. Geophysics, 79(5), WB15–WB24.
Qadrouh, A. N., Carcione, J. M., Alajmi, M. et al., 2020, Bounds and averages of seismic quality factor Q. Stud Geophys Geod, 64, 100–113.
Reuss, A., 1929, Berechnung der fliessgrenze von mischkristallen auf grund der Plastizitatsbedingungen fur einkristalle: Zeitschrift fur Angewandte Mathematic und Mechanik, 9, 49–58.
Ren, S. B., Han, T. C., and Fu, L. Y. (2020). Theoretical and experimental study of P-wave attenuation in partially saturated sandstones under different pressures. Chinese Journal of Geophysics. (in Chinese), 63(07):2722–2736.
Sedlmeier, F., Janecek, J., Sendner, C., Bocquet, L., Netz, R. R., & Horinek, D., 2008, Water at polar and nonpolar solid walls. Biointerphases, 3(3), C23–C39.
Smith, T. M., Sondergeld, C. H., & Rai, C. S., 2003, Gassmann fluid substitutions: A tutorial. Geophysics, 68(2), 430–440.
Sun, X., Tang, X., Cheng, C. H., Frazer, L. N., 2000, P- and S-wave attenuation logs from monopole sonic data. Geophysics. 65(3), 755–765.
Sams, M. S., Neep, J. P., Worthington, M. H., King, M. S., 1997, The measurement of velocity dispersion and frequency-dependent intrinsic attenuation in sedimentary rocks. Geophysics, 62(5), 1456–1464.
Song, Y., Hu, H., Rudnicki, J. W., 2016, Shear properties of heterogeneous fluid-filled porous media with spherical inclusions. Int J Solid Struct, 83, 154–168.
Tosaya, C. A., 1982, Acoustical properties of claybearing rocks (doctoral dissertation). Stanford University.
Tutuncu, A. N., & Sharma, M. M., 1992, The influence of fluids on grain contact stiffness and frame moduli in sedimentary rocks. Geophysics, 57(12), 1571–1582.
Tutuncu, A. N., Podio, A. L., & Sharma, M. M., 1998, Nonlinear viscoelastic behavior of sedimentary rocks. Part II: Hysteresis effects and influence of type of fluid on elastic moduli. Geophysics, 63(1), 195–203.
Tutuncu, A. N., Podio, A. L., Gregory, A. R., & Sharma, M. M., 1998, Nonlinear viscoelastic behavior of sedimentary rocks. Part I: Effect of frequency and strain amplitude. Geophysics, 63(1), 184–194.
Toksöz, M. N., Johnston, D. H., and Timur, A. (1979). Attenuation of seismic waves in dry and saturated rocks: i. laboratory measurements. Geophysics, 44, 681–690.
Vialle, S., & Vanorio, T., 2011, Laboratory measurements of elastic properties of carbonate rocks during injection of reactive CO2-saturated water. Geophysical Research Letters, 38, L01302.
Wang, D. X., Xin, K. F., Li, M. Y., Gao, J. H., and Wu, X. Y., 2006, An experimental study of influence of water saturation on velocity and attenuation in sandstone under stratum conditions. Chin. J. Geophys, 49(03), 908.
White, J. E., 1975, Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics, 40(2):224–232.
Winkler, K. W., 1985, Dispersion analysis of velocity and attenuation in Berea sandstone. J Geophys Res, 90(B8):6793.
Yin, H., Borgomano, J. V. M., Wang, S., Tiennot, M., Fortin, J., & Guéguen, Y., 2019, Fluid substitution and shear weakening in clay-bearing sandstone at seismic frequencies. Journal of Geophysical Research: Solid Earth, 124, 1254–1272.
Yang, H., Duan, H., Zhu, J., 2020, Effects of filling fluid type and composition and joint orientation on acoustic wave propagation across individual fluid-filled rock joints. Int J Rock Mech Min Sci. 128, 104248.
Yang, H., Duan, H. F., Zhu, J. B., 2019, Ultrasonic P-wave propagation through water-filled rock joint: an experimental investigation. J Appl Geophys. 169, 1–14.
Zhubayev, A., Houben, M. E., Smeulders, D. M. J., and Barnhoorn, A., 2016, Ultrasonic velocity and attenuation anisotropy of shales, Whitby, United Kingdom. Geophysics, 81(1), D45–D56.
Zhang, L., Ba, J., Carcione, J. M., and Wu, C., 2022, Seismic wave propagation in partially saturated rocks with a fractal distribution of fluid-patch size. Journal of Geophysical Research: Solid Earth, 127, e2021JB023809.
Zhang, L., Ba, J., and Carcione, J. M., 2021, Wave propagation in infinituple-porosity media. Journal of Geophysical Research: Solid Earth, 126.
Acknowledgments
This work is supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20200021), the National Natural Science Foundation of China (Grant No.42174161 and 41974123), and the Natural Science Foundation of Heilongjiang Province of China (YQ2023D005).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pan, X., Ba, J., Ma, R. et al. Effects of pressure and fluid properties on S-wave attenuation of tight rocks based on ultrasonic experiments. Appl. Geophys. 21, 246–264 (2024). https://doi.org/10.1007/s11770-024-1053-3
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11770-024-1053-3