Applied Geophysics

, Volume 14, Issue 2, pp 225–235 | Cite as

Inversion of river-bottom sediment parameters using mechanically sampled specimens and subbottom profiling data

Article
  • 48 Downloads

Abstract

The study of river dynamics requires knowledge of physical parameters, such as porosity, permeability, and wave propagation velocity, of river-bottom sediments. To do so, sediment properties are determined on mechanically sampled specimens and from subbottom profiling. However, mechanical sampling introduces disturbances that affect test results, with the exception of grain-size distribution. In this study, we perform inversion of acoustic data using the grain-size distribution of mechanically sampled specimens and the relation between porosity and permeability from the Kozeny–Carman equation as prior information. The wave reflection coefficient of the water–silt interface is extracted from the raw subbottom profile. Based on the effective density fluid model, we combine the Kozeny–Carman equation and the wave reflection coefficient. We use experimental data from two Yellow River reservoirs to obtain the wave velocity and density of multiple sections and their spatial variations, and find that the inversion and testing results are in good agreement.

Keywords

mechanical sampling river sediment subbottom profiling density inversion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachman, R. T., 1985, Acoustic and physical property relationships in marine sediment: The Journal of the Acoustical Society of America, 78(2), 616–621.Google Scholar
  2. Biot, M. A., 1956a, Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range: The Journal of the Acoustical Society of America, 28(2), 168–178.Google Scholar
  3. Biot, M. A., 1956b, Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range: The Journal of the Acoustical Society of America, 28(2), 179–191.Google Scholar
  4. Chiu, L., Chang A., Lin, Y. T., and Liu, C. S., 2015, Estimating geoacoustic properties of surficial sediments in the North Mien-Hua Canyon region with a chirp sonar profiler: IEEE Journal of Oceanic Engineering, 40(1), 222–236.Google Scholar
  5. Chotiros, N. P., and Isakson, M. J., 2002, Normal incidence reflection loss from a sandy sediment: The Journal of the Acoustical Society of America, 112(5), 1831–1841.Google Scholar
  6. Hamilton, E. L., 1980, Geoacoustic modeling of the sea floor: The Journal of the Acoustical Society of America, 68(5), 1313–1340.Google Scholar
  7. Holland, C. W., and Brunson, B. A., 1988, The Biot–Stoll sediment model: An experimental assessment: The Journal of the Acoustical Society of America, 84(4), 1437–1443.CrossRefGoogle Scholar
  8. Hovem, J. M., and Ingram, G. D., 1979, Viscous attenuation of sound in saturated sand:The Journal of the Acoustical Society of America, 66(6), 1807–1812.Google Scholar
  9. LeBlanc, L. R., Mayer, L., Rufino, M., Schock, S. G., and King, J., 1992, Marine sediment classification using the chirp sonar: The Journal of the Acoustical Society of America, 91(1), 107–115.Google Scholar
  10. Long, J. J., and Li, G. X., 2015, Theoretical relations between sound velocity and physical-mechanical properties for seafloor sediments: ACTA ACUSTICA, 40(3), 462–468.Google Scholar
  11. Lotter, A. F., Merkt, J., and Sturm, M., 1997, Differential sedimentation versus coring artifacts: a comparison of two widely used piston-coring methods:Journal of Paleolimnology, 18(1), 75–85.Google Scholar
  12. Panda, S., LeBlanc, L. R., and Schock, S. G., 1994, Sediment classification based on impedance and attenuation estimation: The Journal of the Acoustical Society of America, 96(5), 3022–3035.Google Scholar
  13. Qin, H. W., Chen, Y., Gu, L. Y., 2007, Research on disturbing theory of deep-sea sediment sampling: ACTA OCEANOLOGICA SINICA, 29(2), 92–97.Google Scholar
  14. Qin, H. W., Chen, Y., Gu, L. Y., Li, S. L., Tao, J., and Geng, X. Q., 2009, The development of gas-tight sampling techniques: JOURNAL OF TROPICAL OCEANOGRAPHY, 28(4), 42–48.Google Scholar
  15. Schock, S. G., 2004, A method for estimating the physical and acoustic properties of the sea bed using chirp sonar data: IEEE Journal of Oceanic Engineering, 29(4),1200–1217.Google Scholar
  16. Schrottke, K., Becker, M., Bartholomä, A., Flemming, B. W., and Hebbeln, D., 2006, Fluid mud dynamics in the Weser estuary turbidity zone tracked by high-resolution side-scan sonar and parametric sub-bottom profiler: Geo-Marine Letters, 26(3), 185–198.Google Scholar
  17. Stevenson, I. R., McCann C., and Runciman, P. B., 2002, An attenuation-based sediment classification technique using chirp sub-bottom profiler data and laboratory acoustic analysis: Marine Geophysical Researches, 23(4), 277–298.Google Scholar
  18. Stoll, R. D., 1977, Acoustic waves in ocean sediments: Geophysics, 42(4), 715–725.Google Scholar
  19. Stoll, R. D., 1980, Theoretical aspects of sound transmission in sediments: The Journal of the Acoustical Society of America, 68(5), 1341–1350.Google Scholar
  20. Turgut, A., and Yamamoto, T., 1990, Measurements of acoustic wave velocities and attenuation in marine sediments: The Journal of the Acoustical Society of America, 87(6), 2376–2383.Google Scholar
  21. Williams, K. L., 2001, An effective density fluid model for acoustic propagation in sediments derived from Biot theory: The Journal of the Acoustical Society of America, 110(5), 2276–2281.Google Scholar
  22. Zou, D. P., Wu, B. H., Lu, B., Zeng, J. Y., Lin, Q., and Long, J. J., 2008, A study on correction of acoustic velocity in seafloor sediments measured in laboratory: JOU RNAL OF TROPICAL OCEANOGRAPHY, 27(1), 27–31.Google Scholar
  23. Zheng, J., Tang, H., Guo,W. K., Zhang, X., and Fan, T., 2014, Preliminary Analysis on the Physical Characteristics of the Deep Sediment in Xiaolangdi Reservoir: YELLOW RIVER, 36(10), 23–25.Google Scholar

Copyright information

© Editorial Office of Applied Geophysics and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Chang-Zheng Li
    • 1
  • Yong Yang
    • 1
  • Rui Wang
    • 1
  • Jun Zheng
    • 1
  1. 1.The Yellow River Institute of Hydraulic ResearchZhengzhouChina

Personalised recommendations