Advertisement

Applied Geophysics

, Volume 11, Issue 1, pp 9–22 | Cite as

Rock physics modeling of heterogeneous carbonate reservoirs: porosity estimation and hydrocarbon detection

  • Hao Yu
  • Jing BaEmail author
  • Jose Carcione
  • Jin-Song Li
  • Gang Tang
  • Xing-Yang Zhang
  • Xin-Zhen He
  • Hua Ouyang
Article

Abstract

In heterogeneous natural gas reservoirs, gas is generally present as small patchlike pockets embedded in the water-saturated host matrix. This type of heterogeneity, also called “patchy saturation”, causes significant seismic velocity dispersion and attenuation. To establish the relation between seismic response and type of fluids, we designed a rock physics model for carbonates. First, we performed CT scanning and analysis of the fluid distribution in the partially saturated rocks. Then, we predicted the quantitative relation between the wave response at different frequency ranges and the basic lithological properties and pore fluids. A rock physics template was constructed based on thin section analysis of pore structures and seismic inversion. This approach was applied to the limestone gas reservoirs of the right bank block of the Amu Darya River. Based on poststack wave impedance and prestack elastic parameter inversions, the seismic data were used to estimate rock porosity and gas saturation. The model results were in good agreement with the production regime of the wells.

Keywords

Rock physics modeling Biot-Rayleigh theory heterogeneity porosity saturation velocity dispersion gas reservoir detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, L., Batzle, M., and Brevik, I., 2006, Gassmann’ s fluid substitution and shear modulus variability in carbonates at laboratory seismic and ultrasonic frequencies: Geophysics, 71(6), F13–F183.CrossRefGoogle Scholar
  2. Ba, J., 2010, Wave propagation theory in double-porosity medium and experimental analysis on seismic responses: Scientia Sinica — Phys, Mech & Astron (in Chinese), 40(11), 1398–1409.Google Scholar
  3. Ba, J., Cao, H., Carcione, J. M., Tang, G., Yan, X, F,, Sun, W. T., and Nie, J. X., 2013a, Multiscale rock-physics templates for gas detection in carbonate reservoirs: Journal of Applied Geophysics, 93, 77–82.CrossRefGoogle Scholar
  4. Ba, J., Cao, H., and Yao, F. C., 2010, Velocity dispersion of P-waves in sandstone and carbonate: Double-porosity theory and local fluid flow theory: 80th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, Expanded Abstracts, 2557–2563.Google Scholar
  5. Ba, J., Cao, H., Yao, F. C., and Nie, J. X., 2008b, Double-porosity rock model and Squirt flow for laboratory frequency band: Appl. Geophys., 5(4), 261–276.CrossRefGoogle Scholar
  6. Ba, J., Cao, H., Yao, F. C., Yang, Z. F., and Nie, J. X., 2009, Pore heterogeneity induces double-porosity in Guang’an sandstone: CPS/SEG Beijing 2009, Beijing, China.Google Scholar
  7. Ba, J., Carcione, J. M., Cao, H., Du, Q. Z., Yuan, Z. Y., and Lu, M. H., 2012, Velocity dispersion and attenuation of P waves in partially-saturated rocks: Wave propagation equations in double-porosity medium: Chinese J. Geophys. (in Chinese), 55(1), 219–231.Google Scholar
  8. Ba, J., Carcione, J. M., and Nie, J. X., 2011, Biot-Rayleigh theory of wave propagation in double-porosity media: J. Geohpys. Res., 116, B06202, doi: 10.1029/2010JB008185.Google Scholar
  9. Ba, J., Nie, J. X., Cao, H., and Yang, H. Z., 2008a, Mesoscopic fluid flow simulation in double-porosity rocks: Geophys. Res. Lett., 35, L04303, doi: 10.1029/2007GL032429.CrossRefGoogle Scholar
  10. Ba, J., Yan, X. F., Chen, Z. Y., et al., 2013b, Rock physics model and gas saturation inversion for heterogeneous gas reservoirs: Chinese J. Geophys. (in Chinese), 56(5), 1696–1706.Google Scholar
  11. Batzle, M., Han, D., and Hofmann, R., 2006, Fluid mobility and frequency-dependent seismic velocity — Direct measurements: Geophysics, 71(1), N1–N9.CrossRefGoogle Scholar
  12. Berryman, J. G., and Wang, H. F., 1995, The elastic coefficients of double-porosity models for fluid transport in jointed rock: J. Geophys. Res., 100, 24611–24627.CrossRefGoogle Scholar
  13. Berryman, J. G., and Wang, H. F., 2000, Elastic wave propagation and attenuation in a double-porosity dual-permeability medium: Int. J. Rock Mech. Min. Sci., 37, 63–78.CrossRefGoogle Scholar
  14. Biot, M. A., 1956a, Theory of propagation of elastic waves in a fluid-saturated porous solid: I. Low-frequency range: J. Acoust. Soc. Am., 28(2), 168–178.CrossRefGoogle Scholar
  15. Biot, M. A., 1956b, Theory of propagation of elastic waves in a fluid-saturated porous solid: II. Higher frequency range: J. Acoust.Soc. Am., 28(2), 179–191.CrossRefGoogle Scholar
  16. Cadoret, T., Marion, D., and Zinszner, B., 1995, Influence of frequency and fluid distribution on elastic wave velocities in partially saturated limestones: J. Geophys. Res., 100, 9789–9803.CrossRefGoogle Scholar
  17. Carcione, J. M., 2007, Wavefields in real media. Theory and numericalsimulation of wavepropagation in anisotropic, anelastic, porous and electromagnetic media (Second edition): Elsevier.Google Scholar
  18. Carcione, J. M., Gurevich, B., Santos, J. E., and Picotti, S., 2013, Angular and frequency dependent wave velocity and attenuation in fractured porous media: Pure and Applied Geophysics, doi: 10.1007/s00024-012-0636-8.Google Scholar
  19. Carcione, J. M., Helle, H. B., and Pham, N. H., 2003, White’s model for wave propagation in partially saturated rocks: Comparison with poroelastic numerical experiments: Geophysics, 68, 1389–1398.CrossRefGoogle Scholar
  20. Carcione, J. M., and Picotti, S., 2006, P-wave seismic attenuation by slow-wave diffusion: Effects of inhomogeneous rock properties: Geophysics, 71(3), O1–O8.CrossRefGoogle Scholar
  21. Carcione, J. M., Morency, C., and Santos, J. E., 2010, Computational poroelasticity — A review: Geophysics, 75, A229–A243.CrossRefGoogle Scholar
  22. Chen, X. L., and Tang, X. M., 2012, Numerical study on the characteristics of acoustic logging response in the fluid-filled borehole embedded in crack-porous medium: Chinese J. Geophys. (in Chinese), 55(6), 2129–2140.Google Scholar
  23. Dutta, N. C., and Odé, H., 1979b, Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation (White model), Part I-Biot theory: Geophysics, 44, 1777–1788.CrossRefGoogle Scholar
  24. Dutta, N. C., and Seriff, A. J., 1979a, On White’s model of attenuation in rocks with partial gas saturation: Geophysics, 44(11), 1806–1812.CrossRefGoogle Scholar
  25. Dvorkin, J., and Nur, A., 1993, Dynamic poroelasticity: A unified model with the Squirt and the Biot mechanisms: Geophysics, 58(4), 524–533.CrossRefGoogle Scholar
  26. Gassmann, F,. 1951, Über die Elastizität poröser Medien: Vier. der Natur. Gesellschaft in Zürich, 96, 1–23.Google Scholar
  27. Gurevich, B., Zyrianov, V. B., and Lopatnikov, S. L., 1997, Seismic attenuation in finely layered porous rocks: Effects of fluid flow and scattering: Geophysics, 62(1), 319–324.CrossRefGoogle Scholar
  28. Johnson, D. L., 2001, Theory of frequency dependent acoustics in patchy saturated porous media: J. Acoust. Soc. Am., 110(2), 682–694.CrossRefGoogle Scholar
  29. Johnson, D. L., Koplik, J., and Dashen, R., 1987, Theory of dynamic permeability and tortuosity in fluid-saturated porous media: J. Fluid Mech., 176, 379–402.CrossRefGoogle Scholar
  30. Liu, J., Ma, J. W., and Yang, H. Z., 2009, Research on dispersion and attenuation of P wave in periodic layered-model with patchy saturation: Chinese J. Geophys. (in Chinese), 52(11), 2879–2885.Google Scholar
  31. Liu, J., Ma, J. W., and Yang, H. Z., 2010, Research on P-wave’s propagation in White’s sphere model with patchy saturation: Chinese J. Geophys. (in Chinese), 53(4), 954–962.Google Scholar
  32. Mavko, G., Mukerji, T., and Dvorkin, J., 2009, The rock physics handbook - Tools for seismic analysis of porous media (2nd Edition), Cambridge University Press.CrossRefGoogle Scholar
  33. Müller, T. M., Gurevich, B., and Lebedev, M., 2010, Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks-A review: Geophysics, 75(5), 75A147–75A164.CrossRefGoogle Scholar
  34. Nie, J. X., Ba, J., Yang, D. H., Yan, X. F., Yuan, Z. Y., and Qiao, H. P., 2012, BISQ model based on a Kelvin-Voigt viscoelastic frame in a partially saturated porous medium: Applied Geophysics, 9(2), 213–222.CrossRefGoogle Scholar
  35. Nie, J. X., Yang, D. H., and Yang, H. Z., 2004, Inversion of reservoir parameters based on the BISQ model in partially saturated porous media: Chinese J. Geophys. (in Chinese), 47(6), 1101–1105.Google Scholar
  36. Pride, S. R., Berryman, J. G., and Harris, J. M., 2004, Seismic attenuation due to wave-induced flow: J. Geophys. Res., 109, B01201, doi: 10.1029/2003JB002639.Google Scholar
  37. Rayleigh, L., 1917, On the pressure developed in a liquid during the collapse of a spherical cavity: Philos. Mag., 34, 94–98.CrossRefGoogle Scholar
  38. Roehl, P. O., and Choquette, P. W., 1985, Carbonate Petroleum Reservoirs, New York, Springer - Verlag.CrossRefGoogle Scholar
  39. Sams, M. S., Neep, J. P., Worthington, M. H., and King, M. S., 1997, The measurement of velocity dispersion and frequency-dependent intrinsic attenuation in sedimentary rocks: Geophysics, 62, 1456–1464.CrossRefGoogle Scholar
  40. Santos, J. E., Corberó, J. M., and Douglas, J., 1990a, Static and dynamic behavior of a porous solid saturated by a two-phase fluid: J. Acoust. Soc. Am., 87, 1428–1438.CrossRefGoogle Scholar
  41. Santos, J. E., Douglas, J., Corberó, J. M., and Lovera, O. M., 1990b, A model for wave propagation in a porous medium saturated by a two-phase fluid: J. Acoust. Soc. Am., 87, 1439–1448.CrossRefGoogle Scholar
  42. Sun, W. T., Ba, J., Muller, T. M., Carcione, J. M., Cao, H., Du, Q. Z., and Yan, X. F., 2012, P-wave dispersion and attenuation in patchy-saturated Rocks. White, Dutta and Biot-Rayleigh theories: 74th EAGE Expanded Abstracts.Google Scholar
  43. Toms, J., Müller, T. M., Ciz, R., et al., 2006, Comparative review of theoretical models for elastic wave attenuation and dispersion in partially saturated rocks: Soil Dynamics and Earthquake Engineering, 26(6–7), 548–565.CrossRefGoogle Scholar
  44. White, J. E., 1975, Computed seismic speeds and attenuation in rocks with partial gas saturation: Geophysics, 40(2), 224–232.CrossRefGoogle Scholar
  45. Xu, S. Y., and White, R. E., 1995, A physical model for shear-wave velocity prediction: Geophysical Prospecting, 44, 687–717.CrossRefGoogle Scholar
  46. Zhao, H. B., Wang, X. M., Chen, S. M., and Li, L. L., 2010, Acoustic responses characteristics of unsaturated porous media: Science China Physics, Mechanics and Astronomy, 53, 1388–1396.CrossRefGoogle Scholar

Copyright information

© Editorial Office of Applied Geophysics and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hao Yu
    • 1
  • Jing Ba
    • 1
    Email author
  • Jose Carcione
    • 2
  • Jin-Song Li
    • 1
  • Gang Tang
    • 1
  • Xing-Yang Zhang
    • 1
  • Xin-Zhen He
    • 3
  • Hua Ouyang
    • 3
  1. 1.Research Institute of Petroleum Exploration and DevelopmentPetroChinaBeijingChina
  2. 2.Istituto Nazionale di Oceanografia edi Geofisica Sperimentale (OGS)Borgo Grotta Gigante 42cSgonico, TriesteItaly
  3. 3.Amu Darya Petroleum Company Ltd.CNPCBeijingChina

Personalised recommendations