Applied Geophysics

, Volume 9, Issue 3, pp 326–332 | Cite as

Seismic low-frequency-based calculation of reservoir fluid mobility and its applications

  • Xue-Hua Chen
  • Zhen-Hua He
  • Si-Xin Zhu
  • Wei Liu
  • Wen-Li Zhong
Article

Abstract

Low frequency content of seismic signals contains information related to the reservoir fluid mobility. Based on the asymptotic analysis theory of frequency-dependent reflectivity from a fluid-saturated poroelastic medium, we derive the computational implementation of reservoir fluid mobility and present the determination of optimal frequency in the implementation. We then calculate the reservoir fluid mobility using the optimal frequency instantaneous spectra at the low-frequency end of the seismic spectrum. The methodology is applied to synthetic seismic data from a permeable gas-bearing reservoir model and real land and marine seismic data. The results demonstrate that the fluid mobility shows excellent quality in imaging the gas reservoirs. It is feasible to detect the location and spatial distribution of gas reservoirs and reduce the non-uniqueness and uncertainty in fluid identification.

Keywords

fluid mobility seismic low-frequency reservoir characterization fluid identification instantaneous spectral decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batzle, M. L., Han, D., and Hofmann, R., 2006, Fluid mobility and frequency-dependent seismic velocity — Direct measurements: Geophysics, 71(1), N1–N9.Google Scholar
  2. Castagna, J. P., Sun, S., and Siegfried, R. W., 2003, Instantaneous spectral analysis: Detection of low-frequency shadows associated with hydrocarbons: The Leading Edge, 22(2), 120–127.CrossRefGoogle Scholar
  3. Chen, X., He, Z., He, X., and Hunag, D., 2012, Numeric simulation of frequency-dependent seismic response and hydrocarbon detection, a turbidite reservoir in JZ Area, the Bohai Sea, China: AAPG 2012 Annual Convention and Exhibition, Long Beach, California, USA.Google Scholar
  4. Chen, X. H., He, Z. H., Huang, D. J., and Wen, X. T., 2009, Low frequency shadow detection of gas reservoirs in time-frequency domain: Chinese Journal of Geophysics, 52(1), 215–221.Google Scholar
  5. Chen, X. H., He, Z. H., and Zhong, W. L., 2011, Numeric simulation in the relationship between low frequency shadow and reservoir characteristic: Journal of China University of Mining & Technology, 40(4), 584–591.Google Scholar
  6. Ebrom, D., 2004, The low-frequency gas shadow on seismic sections: The Leading Edge, 23(8), 772.CrossRefGoogle Scholar
  7. Goloshubin, G. M., Connie, V. A., Korneev, V. A., Silin, D., and Vingaov, V., 2006, Reservoir imaging using low frequencies of seismic reflections: The Leading Edge, 25(5), 527–531.CrossRefGoogle Scholar
  8. Goloshubin, G. M., Korneev, V. A., and Vingalov, V. M., 2002, Seismic low-frequency effects from oil-saturated reservoir zones: 72th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 1813–1816.Google Scholar
  9. Goloshubin, G. M., Silin, D., and Vingalov, V., 2008, Reservoir permeability from seismic attribute analysis: The Leading Edge, 27(3), 376–381.CrossRefGoogle Scholar
  10. He, Z. H., Xiong, X. J., and Bian, L. E., 2008, Numerical simulation of seismic low-frequency shadows and its application: Applied Geophysics, 5(4), 301–306.CrossRefGoogle Scholar
  11. Hilterman, F. J., Patzek, T. W., Goloshubin, G., Silin, D., Sullivan, C., and Korneev, V., 2007, Advanced reservoir imaging using frequency-dependent seismic attributes: http://petroleum.berkeley.edu/patzek/index.htm.
  12. Korneev, V. A., Goloshubin, G. M., Daley, T. M., and Silin, D. B., 2004, Seismic low frequency effects in monitoring fluid-saturated reservoirs: Geophysics, 69(2), 522–532.Google Scholar
  13. Korneev, V. A., Silin, D., Goloshubin, G. M., and Vingalov, V., 2005, Seismic imaging of oil production rate: 75th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 1–4.Google Scholar
  14. Lichman, E., and Goloshubin, G. M., 2003, Unified approach to gas and fluid detection on instantaneous seismic wavelets: 73th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 1699–1702.Google Scholar
  15. Lichman, E., Peters, S. W., and Squyres, D. H., 2004a, Wavelet energy absorption-2: Here are velocity aspects of wavelet energy absorption: Oil & Gas Journal, 102(3), 36–44.Google Scholar
  16. Lichman, E., Peters, S. W., and Squyres, D. H., 2004b, Four examples show functions of wavelet energy absorption: Oil & Gas Journal, 102(4), 48–52.Google Scholar
  17. Liu, Y., 2004, Seismic “low frequency shadows” for gas sand reflection: 74th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 1563–1566.Google Scholar
  18. Quintal, B., Schmalholz, S. M., Podladchikov, Y. Y., and Carcione, J. M., 2007, Seismic low-frequency anomalies in multiple reflections from thinly-layered poroelastic reservoirs: 77th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abst6racts, 1690–1695.Google Scholar
  19. Silin, D., and Goloshubin, G. M., 2008, Seismic wave reflection from a permeable layer: Low-frequency asymptotic analysis: ASME 2008 International Mechanical Engineering Congress and Exposition, 47–56, Boston, Massachusetts, USA.Google Scholar
  20. Silin, D., and Goloshubin, G. M., 2009, A low-frequency asymptotic model of seismic reflection from a highpermeability layer: Lawrence Berkeley National Laboratory Report, Berkeley, California, USA.Google Scholar
  21. Silin, D., and Goloshubin, G. M., 2010, An asymptotic model of seismic reflection from a permeable layer: Transport in Porous Media, 83(1), 233–256.CrossRefGoogle Scholar
  22. Silin, D. B., Korneev, V. A., Goloshubin, G. M., and Patzek, T. W., 2004, A hydrologic view on Biot’s theory of poroelasticity: Lawrence Berkeley National Laboratory Report, Berkeley, California, USA.Google Scholar
  23. Sun, S., Castagna, J. P., and Siegfried, R. W., 2002, Examples of enhanced spectral processing in direct hydrocarbon detection: 72nd AAPG Annual Meeting, Houston, Texas, 10–13.Google Scholar
  24. Tai, S., Puryear, C., and Castagna, J. P., 2009, Local frequency as a direct hydrocarbon indicator: 79th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 2160–2164.Google Scholar

Copyright information

© Editorial Office of Applied Geophysics and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xue-Hua Chen
    • 1
    • 2
  • Zhen-Hua He
    • 1
    • 2
  • Si-Xin Zhu
    • 3
  • Wei Liu
    • 2
  • Wen-Li Zhong
    • 4
  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and ExploitationChengdu University of TechnologyChengduChina
  2. 2.Key Laboratory of Earth Exploration and Information Technology of Ministry of EducationChengdu University of TechnologyChengduChina
  3. 3.North China University of Water Resources and Electric PowerZhengzhouChina
  4. 4.College of Earth SciencesChengdu University of TechnologyChengduChina

Personalised recommendations