Skip to main content
Log in

Full gravity gradient tensors from vertical gravity by cosine transform

  • Published:
Applied Geophysics Aims and scope Submit manuscript

Abstract

We present a method to calculate the full gravity gradient tensors from pre-existing vertical gravity data using the cosine transform technique and discuss the calculated tensor accuracy when the gravity anomalies are contaminated by noise. Gravity gradient tensors computation on 2D infinite horizontal cylinder and 3D “Y” type dyke models show that the results computed with the DCT technique are more accurate than the FFT technique regardless if the gravity anomalies are contaminated by noise or not. The DCT precision has increased 2 to 3 times from the standard deviation. In application, the gravity gradient tensors of the Hulin basin calculated by DCT and FFT show that the two results are consistent with each other. However, the DCT results are smoother than results computed with FFT. This shows that the proposed method is less affected by noise and can better reflect the fault distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, N., Natarjan, T., and Rao, K. R. 1974, Discrete cosine transform: IEEE Trans Compute, 23(1), 90–93.

    Article  Google Scholar 

  • Bell, R., Anderson, R., and Pratson, L., 1997, Gravity gradiometry resurfaces: The Leading Edge, 16(1), 55–60.

    Article  Google Scholar 

  • Bell, R., 1998. Gravity gradiometry: Scientific American, 278(6), 74–79.

    Article  Google Scholar 

  • Blakely, R. J., and Simpson, R. W., 1986, Approximating edges of source bodies from magnetic or gravity anomalies: Geophysics, 51(7), 1494–1498.

    Google Scholar 

  • Cooper, G. R. J., and Cowan, D. R., 2003, The meter reader—Sunshading geophysical data using fractional order horizontal gradients: The Leading Edge, 22(3), 204–205.

    Article  Google Scholar 

  • Cordell, L., and Grauch, V. J. S., 1982, Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico: 52th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 246–247.

  • —, 1985, Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico: in Hinze, W. J., Ed., Utility of Regional Gravity and Magnetic Maps, Soc. Expl. Geophys., 181–197.

  • Cvetkovic, Z., and Popovic, M. V., 1992, New fast algorithms for the computation discrete cosine and sine transform: IEEE Trans. Signal Process., 40(8), 2083–2086.

    Article  Google Scholar 

  • Eaton, D., and Vasudevan, K., 2004, Skeletonization of aeromagnetic data: Geophysics, 69(2), 478–488.

    Google Scholar 

  • Fedi, M., and Florio, G., 2001, Detection of potential fields source boundaries by enhanced horizontal derivative method: Geophysical Prospecting, 49(1), 40–58.

    Article  Google Scholar 

  • FitzGerald, D., Reid, A., and McInerney, P., 2004, New discrimination techniques for Euler deconvolution: Computers & Geosciences, 30(5), 461–469.

    Article  Google Scholar 

  • Gunn, P. J., 1975, Linear transformations of gravity and magnetic fields: Geophysical Prospecting, 23(2), 300–312.

    Article  Google Scholar 

  • Gupta, V. K., and Ramani, N., 1982, Optimum second vertical derivatives in geologic mapping and mineral exploration: Geophysics, 47(12), 1706–1715.

    Google Scholar 

  • Hansen, R. O., and Suciu, L., 2002, Multiple-source Euler deconvolution: Geophysics, 67(2), 525–535.

    Google Scholar 

  • Hu, G. S., 2003, Digital signal processing: Tsinghua University Press, Beijing.

    Google Scholar 

  • Jain, A. K., 1976, A fast Karhunen-Loeve transform for a class of stochastic processes: IEEE Trans. Commun., 24(9), 1023–1029.

    Article  Google Scholar 

  • Jekeli, C., 1988. The gravity gradiometer survey system (GGSS): EOS Transactions of the American Geophysical Union, 69(8), 116–117.

    Article  Google Scholar 

  • Li, Y., and Oldenburg, D. W., 1998, 3D inversion of gravity data: Geophysics, 63(1), 109–119.

    Google Scholar 

  • Luo, X. K., and Guo, S. Y., 1991, Applied geophysics course: Geological Publishing House, Beijing.

    Google Scholar 

  • Mickus, K. L. and Hinojosa, J. H., 2001, The complete gravity gradient tensor derived from the vertical component of gravity: A Fourier transform technique: Journal of Applied Geophysics, 46(3), 159–174.

    Article  Google Scholar 

  • Montana, C. J., Mickus, K. L., and Peeples, W. J., 1992, Program to calculate the gravitational field and gravity gradient tensor resulting from a system of right rectangular prisms: Computers & Geosciences, 18(5), 587–602.

    Article  Google Scholar 

  • Mu, S. M., Shen, N. H., and Sun, Y. S., 1990, Method of regional geophysical data processing and application: Changchun, Jilin Science and Technology Press.

    Google Scholar 

  • Nabighian, M. N., and Hansen, R. O., 2001, Unification of Euler and Werner deconvolution in three dimensions via the generalized Hilbert transform: Geophysics, 66(6), 1805–1810.

    Google Scholar 

  • Pawlowski, B., 1998, Gravity gradiometry in resource exploration: The Leading Edge, 17, 51–52.

    Article  Google Scholar 

  • Pearson, W. C., 2001, Aeromagnetic imaging of fractures in a basin centered gas play: AAPG Explorer, 22(1), 52–55.

    Google Scholar 

  • Ravat, D., Wang, B., Wildermuth, E., and Taylor, P. T., 2002, Gradients in the interpretation of satellite-altitude magnetic data: An example from central Africa: Journal of Geodynamics, 33(1–2), 131–142.

    Article  Google Scholar 

  • Vasco, D. W., 1989, Resolution and variance operators of gravity and gravity gradiometry: Geophysics, 54(7), 889–899.

    Google Scholar 

  • Wang, W. Y., Pan, Y., and Qiu, Z. Y., 2009, A new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for potential field data: Applied Geophysics, 6(3), 226–233.

    Article  Google Scholar 

  • Wang, W. Y., Zhang, G. C., and Liang, J. S., 2010, Spatial variation law of vertical derivative zero points for potential field data: Applied Geophysics, 7(3), 197–209.

    Article  Google Scholar 

  • Wu, X. Z., Liu, G. H., Xue, G. Q., Wang, Y. J., and Bai, D. M., 1987, Analysis of method and application on Fourier transform and potential field spectrum: Surveying and Mapping Press, Beijing.

    Google Scholar 

  • Zeng, H. L., Zhang, Q. H., and Liu, J., 1994, Location of secondary faults from cross-correlation of the second vertical derivative of gravity anomalies: Geophysical Prospecting, 42(8), 841–854.

    Article  Google Scholar 

  • Zhang, F. X., Meng, L. S., Zhang, F. Q., Liu, C., Wu, Y. G., and Du, X. J., 2006, A new method for spectral analysis of the potential field and conversion of derivative of gravity-anomalies: Cosine transform: Chinese Journal of Geophysics, 49(1), 244–248.

    Google Scholar 

  • Zhang, F. X., Zhang, F. Q., Meng, L. S., and Liu, C., 2007, Magnetic potential spectrum analysis and calculating method of magnetic anomaly derivatives based on discrete cosine transform: Chinese Journal of Geophysics, 50(1), 282–290.

    Google Scholar 

  • Zhdanov, M. S., Ellis, R., and Mukherjee, S., 2004, Threedimensional regularized focusing inversion of gravity gradient tensor component data: Geophysics, 69(4), 925–937.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work is supported by the Scientific Research Starting Foundation of HoHai University, China (2084/40801136) and the Fundamental Research Funds for the Central Universities (No.2009B12514).

Jiang Fu-Yu: See biography and photo in the Applied Geophysics June 2012 issue, P. 130

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, FY., Huang, Y. & Yan, K. Full gravity gradient tensors from vertical gravity by cosine transform. Appl. Geophys. 9, 247–260 (2012). https://doi.org/10.1007/s11770-012-0335-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11770-012-0335-3

Keywords

Navigation