Skip to main content
Log in

Factors affecting soil respiration in reference with temperature’s role in the global scale

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Soil respiration is CO2 evolution process from soil to atmosphere, mainly produced by soil micro-organism and plant roots. It is affected not only by biological factors (vegetation, micro-organism, etc.) and environmental factors (temperature, moisture, pH, etc.), but also more and more strongly by man-made factors. Based on literature survey, main factors affecting soil respiration were reviewed. The relationship of soil respiration to latitude and to mean annual temperature were analyzed by using the data measured from forest vegetation in the world. As a result, soil respiration rate decreased exponentially with an increase of latitude, and increased with increasing temperature. Following the relationship between soil respiration and temperature, Q10 value (law of Van Hoff) was obtained as 1.57 in the global scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert R., 1912. Bodenuntersuchungen im Gebiete der Luneburger Heide. Zeitschrift fur Forest-and Jagdwesen. 44: 655–671. (Cited in Magnusson, 1992)

    Google Scholar 

  • Anderson J. M., 1973. Carbon dioxide evolution from two temperate deciduous woodland soils. J. Appl. Ecol., 10: 361–378

    Article  Google Scholar 

  • Anderson J. O., Domsch K. H., 1975. Measurement of bacterial and fungal contributions to respiration of selected agricultural and forest soils. Can. J. Microbio., 21: 314–322.

    Article  Google Scholar 

  • Armentano T. V., E. S. Menges, 1986. Patterns of change in the carbon balance of organic soil-wetlands of the temperate zone. J. Ecol., 74: 755–774.

    Article  Google Scholar 

  • Baath E., K. Arnebrant, 1994. Growth rate and response of bacterial communities to pH in limed and ash related forest soils. Soil Biol. Biochem., 26(8): 995–1001.

    Article  Google Scholar 

  • Badia D. V., J. M. Alcaniz, 1993. Basal and specific microbial respiration in semiarid agricultural soils: Organic amendment and irrigation management effects. Geomicrobiology Journal, 11(3): 261–274.

    Article  Google Scholar 

  • Bohlen P. J., C. A. Edwards, 1995. Earthworm effects of N dynamics and soil respiration in microcosms receiving organic and in organic nutrients. Soil Bio. Biochem., 27(3): 341–348.

    Article  Google Scholar 

  • Bunnell F. L. et al., 1977. Microbial respiration and substrate weight loss-II: A model of influences of chemical composition. Soil Biol. Biochem., 9: 41–47.

    Article  Google Scholar 

  • Buyanovsky G. A. et al., 1986. Soil respiration in a winter wheat ecosystem. Soil Sci. Soc. Am. J., 50: 338–344.

    Article  Google Scholar 

  • Chagas C. I. et al., 1995. Tillage and cropping effects on selected properties of an argiudoll in Argentina. Communications in Soil Science and Plant Analysis, 26 (5–6): 643–655.

    Article  Google Scholar 

  • Chapman S. B., 1921. Aeration and Air-Contents. Publication 315. Carnegie Institution of Washington. DC. (Magnusson, 1992).

  • Detwiler R. P., C. A. S. Hall, 1988. Tropical foest and the global carbon cycle. Science, 239: 42–47.

    Article  Google Scholar 

  • Edwards N. T., 1975. Division S-7—Forest and range soils: effects of temperature and moisture on carbon dioxide evolution in a mixed deciduous forest floor. Soil Sci. Soc. Amer. Proc., 361–365.

  • Edwards, N. T., W. F. Harris, 1977. Carbon cycling in a mixed deciduous forest floor. Ecology, 58: 431–437.

    Article  Google Scholar 

  • Fang Jingyun, Liu Guohua, Xu Songling, 1996. Soil carbon pool in China and its global significance. Journal of Environmental Sciences, 8(2): 249–254.

    Google Scholar 

  • Fang Jingyun, Wei Menghua, 1998. Carbon cycle in the arctic terrestrial ecosystems in relation to the global warming. Acta Scientiae Circumstantiae, 18(2):1–9. (in Chinese)

    Google Scholar 

  • Farrell D. A. et al., 1966. Vapor transfer in soil due to air turbulence. Soil Sci., 102(5): 305–313.

    Article  Google Scholar 

  • Fernandez I. J. et al., 1993. Soil carbon dioxide characteristics under different forest types and harvest. Soil Sci. Soc. Am. J., 57: 1115–1121.

    Article  Google Scholar 

  • Jenkinson D. S., D. E. Adams, A. Wild, 1991. Model estimates of CO2 emissions from soil in response to global warming. Nature, 351: 304–306.

    Article  Google Scholar 

  • Koizumi H. et al., 1991. Effect of carbon dioxide concentration on microbial respiration in soil. Ecol. Res., 6(3): 227–232.

    Article  Google Scholar 

  • Kretzschmar A., J. M. Ladd, 1993. Decomposition of carbon-14 labelled plant material in soil: The influence of substrate location, soil compaction and earthworm numbers. Soil Biol. Biochem., 25(6): 803–809.

    Article  Google Scholar 

  • Kucera C. L., D. R. Kirkham, 1971. Soil respiration studies in tallgrass prairie in Missouri. Ecology, 52(5): 912–915.

    Article  Google Scholar 

  • Macfadyen A., 1970. Simple methods for measuring and maintaining the proportion of carbon dioxide in air, for use in ecological studies of soil respiration. Soil Bio. Biochem., 2: 9–18.

    Article  Google Scholar 

  • Macfadyen A., 1973. Inhibitory effects of carbon dioxide on microbial activity in soil. Pedobiologia, 13: 140–149.

    Google Scholar 

  • Magnusson T., 1992. Studies of the soil atmosphere and related physical site characteristics in mineral forest soils. J. Soil Sci., 43: 767–790.

    Article  Google Scholar 

  • Mathes K., Th. Schriefer, 1985. Soil respiration during secondary succession influence of temperature and moisture. Soil Biol. Biochem., 17(2): 205–211.

    Article  Google Scholar 

  • Nakadai T., 1993. Examination of the method for measuring soil respiration in cultivated land: effect of carbon dioxide concentration on soil respiration. Ecol. Res., 8(1): 65–71.

    Article  Google Scholar 

  • Nakane K., 1986. Cycling of soil carbon in a Japanese red pine forest. II. Changes occurring in the first year after a clear-felling. Ecol. Res., 1: 47–18.

    Article  Google Scholar 

  • Nakane K., H. Tsubota, M. Yamamoto, 1984. Cycling of soil carbon in a Japanese red pine forest II. Before a clear-felling. Bot. Mag., 97: 39–60.

    Article  Google Scholar 

  • Neilson J. W., I. L. Pepper, 1990. Soil respiration as an index of soil aeration. Soil Sci. Soc. Am. J., 54: 428–432.

    Article  Google Scholar 

  • Pajari B., 1995. Soil respiration in a poor upland site of Scots pine stand subjected to elevated temperatures and atmospheric carbon concentration. Plant and Soil, 168–169 (10): 563–570.

    Article  Google Scholar 

  • Peterson K. M., W. D. Billings, 1975. Carbon dioxide flux from tundra soils and vegetation as related to temperature at Barrow, Alaska. Am. Mid. Nat., 94 (10): 88–94.

    Article  Google Scholar 

  • Qi, J., J. D. Marshell, K. g. Mattson, 1994. High soil carbon dioxide concentrations inhibit root respiration of Douglas fir. New Phytol., 128: 435–442.

    Article  Google Scholar 

  • Raich J. W., W. H. Schelesinger, 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B: 81–99.

    Google Scholar 

  • Raich J. W., K. J. Nadelboffer, 1989. Belowground carbon allocation in forest ecosystems: global trends. Ecology, 70 (5): 1346–1354.

    Article  Google Scholar 

  • Reiners W. A., 1968. Carbon dioxide evolution from the floor of three Minnesota forests. Ecology, 49: 471–483.

    Article  Google Scholar 

  • Reinke J. J., D. C. Adriano, K. W. Mcleod, 1981. Effects of litter alteration on carbon dioxide from a South Carolina pine forest floor. Soil Sci. Soc. Am. J., 45: 620–623.

    Article  Google Scholar 

  • Russel E. J., A. Appleyard, 1915. The atmosphere of the soil: its composition and the causes of variation. J. Agri. Sci., 7: 1–48.

    Article  Google Scholar 

  • Saussure Th. DE., 1804. Recherches chimiques sur la. Vegetation. Paris: Gauthier-Villars. (Magnusson, 1992)

    Google Scholar 

  • Schlentner R. E., K. V. Cleve, 1985. Relationships between CO2 evolution from soil, substrate temperature and substrate moisture in four mature forest types in interior Alaska. Can. J. For. Res., 15: 97–106.

    Article  Google Scholar 

  • Schlesinger W. H., 1977. Carbon balance in terrestrial detritus. Ann. Rev. Ecol. Syst., 8: 51–81.

    Article  Google Scholar 

  • Silvola J. et al., 1985. Effect of draining and fertilization on soil respiration at three ameliorated peatland sites. Acta For. Fenn., 191: 1–32.

    Google Scholar 

  • Singh J. S., S. R. Gupta, 1977. Plant decomposition and soil respiration in terrestrial ecosystems. Bot. Rev., 43:449–528

    Article  Google Scholar 

  • Tokyo Astronomical Observatory, 1985. Year Book of Science. Tokyo: Maruzen Press. (In Japanese)

    Google Scholar 

  • Wiant H. V., 1967. Influence of temperature on the rate of soil respiration. J. Forest, 65: 489–490.

    Google Scholar 

  • Wildung R. E., 1978. The interdependent effects of soil temperature and water content on soil respiration rate and plant root decomposition and arid grassland soils. Soil Biol. Biochem., 7: 373–378.

    Article  Google Scholar 

  • Witkamp M., M. L. Frank, 1969. Evolution of CO2 from litter, humus and subsoil of a pine stand. Pedobiologia, 9: 358–365.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This project was supported by National Natural Science Foundation of China to FJY (No. 3940003).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, J., Zhao, K. & Liu, S. Factors affecting soil respiration in reference with temperature’s role in the global scale. Chin. Geograph.Sc. 8, 246–255 (1998). https://doi.org/10.1007/s11769-997-0018-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-997-0018-9

Key words

Navigation