Skip to main content
Log in

Quantifying the Contribution of Recycled Moisture to Precipitation in Temperate Glacier Region, Southeastern Tibetan Plateau, China

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Recycled moisture is an important indicator of the renewal capacity of regional water resources. Due to the existence of Yulong Snow Mountain, Lijiang in Yunnan Province, southeast of the Qinghai-Tibet Plateau, China, is the closest ocean glacier area to the equator in Eurasia. Daily precipitation samples were collected from 2017 to 2018 in Lijiang to quantify the effect of sub-cloud evaporation and recycled moisture on precipitation combined with the d-excess model during monsoon and non-monsoon periods. The results indicated that the d-excess values of precipitation fluctuated between −35.6‰ and 16.0‰, with an arithmetic mean of 3.5‰. The local meteoric water line (LMWL) was δD = 7.91δ18O + 2.50, with a slope slightly lower than the global meteoric water line (GMWL). Sub-cloud evaporation was higher during the non-monsoon season than during the monsoon season. It tended to peak in March and was primarily influenced by the relative humidity. The source of the water vapour affected the proportion of recycled moisture. According to the results of the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model, the main sources of water vapour in Lijiang area during the monsoon period were the southwest and southeast monsoons. During the non-monsoon period, water vapour was transported by a southwesterly flow. The recycled moisture in Lijiang area between March and October 2017 was 10.62%. Large variations were observed between the monsoon and non-monsoon seasons, with values of 5.48% and 25.65%, respectively. These differences were primarily attributed to variations in the advection of water vapour. The recycled moisture has played a supplementary role in the precipitation of Lijiang area

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Clark I D, Fritz P, 1997. Environmental Isotopes in Hydrogeology. Boca Raton: CRC Press, 328. doi: https://doi.org/10.1201/9781482242911

    Google Scholar 

  • Craig H, 1961. Isotopic variations in meteoric waters. Science, 133(3465): 1702–1703. doi: https://doi.org/10.1126/science.133.3465.1702

    Article  CAS  Google Scholar 

  • Craig H, Gordon L I, 1965. Deuterium and Oxygen 18 variations in the ocean and the marine atmosphere. In stable isotopes in oceanographic studies and paleotemperatures. CNR-Lab. di Geologia Nucleare, 9–130.

  • Dansgaard W, 1964. Stable isotopes in precipitation. Tellus, 16(4): 436–468. doi: https://doi.org/10.1111/j.2153-3490.1964.tb00181.x

    Article  Google Scholar 

  • Fang Jinxin, Pu Tao, Shi Xiaoyi et al., 2019. Runoff variation and its influence factors in the Yanggong River basin of Mt. Yulong region due to climate change. Journal of Glaciology and Geocryology, 41(2): 268–274.

    Google Scholar 

  • Froehlich K, Gonfiantini R, Aggarwal P, 2004. Isotope hydrology at IAEA: history and activities. In: The Basis of Civilization—Water Science (Proceedings of the UNESCO/IAHS/IWHA. Rome: IAHS Publication, 286.

    Google Scholar 

  • Froehlich K, Kralik M, Papesch W et al., 2008. Deuterium excess in precipitation of Alpine regions moisture recycling. Isotopes in Environmental and Health Studies, 44(1): 61–70. doi: https://doi.org/10.1080/10256010801887208

    Article  CAS  Google Scholar 

  • Fu Xiang, 2005. Research on Precipitation Recycling over the Mid-lower Reaches of the Yangtze River. Beijing: Chinese Academy of Meteorological Sciences. (in Chinese).

    Google Scholar 

  • Gong C L, Eltahir E, 1996. Sources of moisture for rainfall in West Africa. Water Resources Research, 32(10): 3115–3121. doi: https://doi.org/10.1029/96WR01940

    Article  CAS  Google Scholar 

  • Gui Juan, Li Zongxing, Du Fa et al., 2023. Influence of evaporating under the clouds on the precipitation stable isotope in the transition zone between Tibetan Plateau and arid region of China. Chinese Geographical Science, 33(4): 764–778. doi: https://doi.org/10.1007/s11769-023-1371-z

    Article  Google Scholar 

  • Górnicki K, Winiczenko R, Kaleta A et al., 2017. Evaluation of models for the dew point temperature determination. Technical Sciences, 20(3): 241–257. doi: https://doi.org/10.31648/ts.5425

    Article  Google Scholar 

  • Hu Yongbo, 2022. Quantifying the Moisture Recycling Fractions from Lake Taihu with an Isotope-based Method. Nanjing: Nanjing University of Information Science & Technology. (in Chinese).

    Google Scholar 

  • Jasechko S, Sharp Z D, Gibson J J et al., 2013. Terrestrial water fluxes dominated by transpiration. Nature, 496(7445): 347–350. doi: https://doi.org/10.1038/nature11983

    Article  CAS  Google Scholar 

  • Jiao Y M, Liu C J, Liu Z L et al., 2020. Impacts of moisture sources on the temporal and spatial heterogeneity of monsoon precipitation isotopic altitude effects. Journal of Hydrology, 583: 124576. doi: https://doi.org/10.1016/j.jhydrol.2020.124576

    Article  CAS  Google Scholar 

  • Kendall C, Caldwell E A, 1998. Fundamentals of Isotope Geochemistry. In: Kendall C, McDonnell J J (eds.). Isotope Tracers in Catchment Hydrology. Amsterdam: Elsevier, 51–86. doi: https://doi.org/10.1016/B978-0-444-81546-0.50009-4

    Chapter  Google Scholar 

  • Kong Y L, Pang Z H, Froehlich K, 2013. Quantifying recycled moisture fraction in precipitation of an arid region using deuterium excess. Tellus B: Chemical and Physical Meteorology, 65(1): 19251. doi: https://doi.org/10.3402/tellusb.v65i0.19251

    Article  Google Scholar 

  • Li Guang, Zhang Xinping, Wu Huawu et al., 2014. Stable oxygen isotope in precipitation in relation to the meteorological factors and the moisture sources in Yunnan. Journal of Natural Resources, 29(6): 1043–1052.

    Google Scholar 

  • Li Xiucang, Jiang Tong, Wu Ping, 2020. Progress and prospect of the moisture recycling models. Advances in Earth Science, 35(10): 1029–1040.

    Google Scholar 

  • Li Yaju, 2020. Observation of Stable Isotopes of Water Vapor and Precipitation near the Ground in Nanjing. Nanjing: Nanjing University. (in Chinese).

    Google Scholar 

  • Li Yongsheng, Zhang Lixia, Wang Bo, 2020. Contributions of local and remote water vapor transport to precipitation variations over Songhua River basin. Chinese Journal of Atmospheric Sciences, 44(3): 611–624.

    CAS  Google Scholar 

  • Li Z X, Feng Q, Wang Q J et al., 2016a. Contributions of local terrestrial evaporation and transpiration to precipitation using δ18O and D-excess as a proxy in Shiyang inland river basin in China. Global and Planetary Change, 146: 140–151. doi: https://doi.org/10.1016/j.gloplacha.2016.10.003

    Article  Google Scholar 

  • Li Z X, Feng Q, Wang Y M et al., 2016b. Effect of sub-cloud evaporation on the δ18O of precipitation in Qilian Mountains and Hexi Corridor, China. Sciences in Cold and Arid Regions, 8(5): 378–387. doi: https://doi.org/10.3724/SP.J.1226.2016.00378

    Google Scholar 

  • Liu Xuemei, Zhang Mingjun, Wang Shengjie et al., 2016. Estimation and analysis of precipitation cloud base height in China. Meteorological Monthly, 42(9): 1135–1145.

    Google Scholar 

  • Luo Z D, Nie Y P, Chen H S et al., 2023. Water age dynamics in plant transpiration: the effects of climate patterns and rooting depth. Water Resources Research, 59(4): e2022WR033566. doi: https://doi.org/10.1029/2022WR033566

    Article  Google Scholar 

  • Majoube M, 1971. Fractionnement en oxygène 18 et en deuterium entre l’eau et sa vapeur. Journal de Chimie Physique, 68: 1423–1436. doi: https://doi.org/10.1051/jcp/1971681423

    Article  CAS  Google Scholar 

  • Martens B, Miralles D G, Lievens H et al., 2017. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development, 10(5): 1903–1925. doi: https://doi.org/10.5194/gmd-10-1903-2017

    Article  Google Scholar 

  • Miralles D G, Holmes T R H, de Jeu R A M et al., 2011. Global land-surface evaporation estimated from satellite-based observations. Hydrology and Earth System Sciences, 15(2): 453–469. doi: https://doi.org/10.5194/hess-15-453-2011

    Article  Google Scholar 

  • Mu Jianxin, Li Zhongqin, Zhang Hui et al., 2019. Mass balance variation of continental glacier and temperate glacier and their response to climate change in western China: taking Urumqi Glacier No. 1 and Parlung No. 94 Glacier as examples. Arid Land Geography, 42(1): 20–28.

    Google Scholar 

  • Pang Hongxi, He Yuanqing, Lu Aigang et al., 2006. Synoptic-scale variation of δ18O in summer monsoon rainfall at Lijiang, China. Chinese Science Bulletin, 51(23): 2897–2904. doi: https://doi.org/10.1007/s11434-006-2158-1

    Article  CAS  Google Scholar 

  • Pang Z H, Kong Y L, Li J et al., 2017. An isotopic geoindicator in the hydrological cycle. Procedia Earth and Planetary Science, 17: 534–537. doi: https://doi.org/10.1016/j.proeps.2016.12.135

    Article  Google Scholar 

  • Peng H D, Mayer B, Harris S et al., 2007. The influence of below-cloud secondary effects on the stable isotope composition of hydrogen and oxygen in precipitation at Calgary, Alberta, Canada. Tellus B: Chemical and Physical Meteorology, 59(4): 698–704. doi: https://doi.org/10.1111/j.1600-0889.2007.00291.x

    Article  Google Scholar 

  • Peng H D, Mayer B, Norman A L et al., 2005. Modelling of hydrogen and oxygen isotope compositions for local precipitation. Tellus B: Chemical and Physical Meteorology, 57(4): 273–282. doi: https://doi.org/10.1111/j.1600-0889.2005.00145.x

    Article  Google Scholar 

  • Peng P Y, Zhang X J, Chen J, 2020. Modeling the contributions of oceanic moisture to summer precipitation in eastern China using 18O. Journal of Hydrology, 581: 124304. doi: https://doi.org/10.1016/j.jhydrol.2019.124304

    Article  CAS  Google Scholar 

  • Peng T R, Liu K K, Wang C H et al., 2011. A water isotope approach to assessing moisture recycling in the island-based precipitation of Taiwan: a case study in the western Pacific. Water Resources Research, 47(8): W08507. doi: https://doi.org/10.1029/2010WR009890

    Article  Google Scholar 

  • Phillips D L, Gregg J W, 2001. Uncertainty in source partitioning using stable isotopes. Oecologia, 127(2): 171–179. doi: https://doi.org/10.1007/s004420000578

    Article  Google Scholar 

  • Pu Jianchen, Yao Tandong, Wang Ninglian et al., 2004. Fluctuations of the glaciers on the Qinghai-Tibetan Plateau during the past century. Journal of Glaciology and Geocryology, 26(5): 517–522.

    Google Scholar 

  • Pu T, He Y Q, Zhang T et al., 2013. Isotopic and geochemical evolution of ground and river waters in a karst dominated geological setting: a case study from Lijiang basin, South-Asia monsoon region. Applied Geochemistry, 33: 199–212. doi: https://doi.org/10.1016/j.apgeochem.2013.02.013

    Article  CAS  Google Scholar 

  • Pu T, Qin D H, Kang S C et al., 2017. Water isotopes and hydrograph separation in different glacial catchments in the southeast margin of the Tibetan Plateau. Hydrological Processes, 31(22): 3810–3826. doi: https://doi.org/10.1002/hyp.11293

    Article  CAS  Google Scholar 

  • Qin Dahe, Ding Yongjian, 2009. Cryospheric changes and their impacts: present, trends and key issues. Climate Change Research, 5(4): 187–195.

    Google Scholar 

  • Ren Chuanbin, Wu Lixin, Zhang Yuanyuan et al., 2016. Analyze to the seasonal differences of transport pathways and potential source-zones of Beijing Urban PM2.5. China Environmental Science, 36(9): 2591–2598.

    Google Scholar 

  • Shi Xiaoyi, 2020. The Influence Mechanisms and Simulations of Precipitation Stable Isotopes over the Southern Tibetan Plateau. Lanzhou: Lanzhou University. (in Chinese).

    Google Scholar 

  • Shi X Y, Risi C, Pu T et al., 2020. Variability of isotope composition of precipitation in the southeastern Tibetan Plateau from the synoptic to seasonal time scale. Journal of Geophysical Research: Atmospheres, 125(6): e2019JD031751. doi: https://doi.org/10.1029/2019JD031751

    Article  CAS  Google Scholar 

  • Stewart M K, 1975. Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops: applications to atmospheric processes and evaporation of lakes. Journal of Geophysical Research, 80(9): 1133–1146. doi: https://doi.org/10.1029/JC080i009p01133

    Article  CAS  Google Scholar 

  • Trenberth K E, 1999. Atmospheric Moisture Recycling: Role of Advection and Local Evaporation. Journal of Climate, 12(5): 1368–1381. doi: https://doi.org/10.1175/1520-0442(1999)012<1368:AMR-ROA>2.0.CO;2

    Article  Google Scholar 

  • Wang S J, Che Y J, Pang H X et al., 2020. Accelerated changes of glaciers in the Yulong Snow Mountain, Southeast Qinghai-Tibetan Plateau. Regional Environmental Change, 20(2): 38. doi: https://doi.org/10.1007/s10113-020-01624-7

    Article  CAS  Google Scholar 

  • Wang S J, Jiao R, Zhang M J et al., 2021. Changes in below-cloud evaporation affect precipitation isotopes during five decades of warming across China. Journal of Geophysical Research: Atmospheres, 126(7): e2020JD033075. doi: https://doi.org/10.1029/2020JD033075

    Article  CAS  Google Scholar 

  • Wang S J, Zhang M J, Che Y J et al., 2016a. Contribution of recycled moisture to precipitation in oases of arid central Asia: a stable isotope approach. Water Resources Research, 52(4): 3246–3257. doi: https://doi.org/10.1002/2015WR018135

    Article  Google Scholar 

  • Wang S J, Zhang M J, Che Y J et al., 2016b. Influence of below-cloud evaporation on deuterium excess in precipitation of Arid Central Asia and its meteorological controls. Journal of Hydrometeorology, 17(7): 1973–1984. doi: https://doi.org/10.1175/JHM-D-15-0203.1

    Article  Google Scholar 

  • Wang Y J, Tang Y, Xu Y et al., 2021. Isotopic dynamics of precipitation and its regional and local drivers in a plateau inland lake basin, Southwest China. Science of The Total Environment, 763: 143043. doi: https://doi.org/10.1016/j.scitotenv.2020.143043

    Article  CAS  Google Scholar 

  • Wu H W, Fan H X, Lei R Y et al., 2023. Atmospheric processes control the stable isotopic variability of precipitation in the middle–lower reaches of the Yangtze River Basin, East Asian monsoon region. Journal of Hydrology, 623: 129835. doi: https://doi.org/10.1016/j.jhydrol.2023.129835

    Article  CAS  Google Scholar 

  • Wu H W, Fu C S, Zhang C C et al., 2022. Temporal variations of stable isotopes in precipitation from Yungui Plateau: insights from moisture source and rainout effect. Journal of Hydrometeorology, 23(1): 39–51. doi: https://doi.org/10.1175/JHM-D-21-0098.1

    Article  Google Scholar 

  • Wu H W, Zhang X P, Li X Y et al., 2015. Seasonal variations of deuterium and oxygen-18 isotopes and their response to moisture source for precipitation events in the subtropical monsoon region. Hydrological Processes, 29(1): 90–102. doi: https://doi.org/10.1002/hyp.10132

    Article  CAS  Google Scholar 

  • Wu Xixi, Chen Fenli, Zhu Guofeng et al., 2021. Analysis of water vapor source and contribution of recycled moisture to precipitation in Southwest China based on LMDZ model. Earth and Environment, 49(4): 400–408. (in Chinese)

    Google Scholar 

  • Xiao Hanyu, Zhang Mingjun, Wang Shengjie et al., 2020. Sub-cloud secondary evaporation effect of precipitation isotope in Shaanxi-Gansu-Ningxia region, China. Chinese Journal of Applied Ecology, 31(11): 3814–3822. (in Chinese)

    Google Scholar 

  • Yang Kun, Tang Qiuhong, Lu Hui, 2022. Precipitation recycling ratio and water vapor sources on the Tibetan Plateau. Science China Earth Sciences, 65(3): 584–588. doi: https://doi.org/10.1007/s11430-021-9871-5

    Article  Google Scholar 

  • Yang X Q, Yong B, Ren L L et al., 2017. Multi-scale validation of GLEAM evapotranspiration products over China via China-FLUX ET measurements. International Journal of Remote Sensing, 38(20): 5688–5709. doi: https://doi.org/10.1080/01431161.2017.1346400

    Article  Google Scholar 

  • Yao Junqiang, Yang Qing, Wu Likun et al., 2016. Quantifying recycled moisture fraction in precipitation of Tianshan Mountains. Desert and Oasis Meteorology, 10(5): 37–43.

    Google Scholar 

  • Yao T D, Thompson L, Yang W et al., 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2(9): 663–667. doi: https://doi.org/10.1038/nclimate1580

    Article  Google Scholar 

  • Yuan Ruifeng, Li Zongxing, Cai Yuqin et al., 2019. Space-time characteristics and environmental significance of stable isotopes in precipitation at an Arid Inland River Basin. Environmental Science, 40(5): 2122–2131. (in Chinese)

    Google Scholar 

  • Zemp M, Frey H, Gärtner-Roer I et al., 2015. Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology, 61(228): 745–762. doi: https://doi.org/10.3189/2015JoG15J017

    Article  Google Scholar 

  • Zhang F, Huang T M, Man W M et al., 2021. Contribution of recycled moisture to precipitation: a modified d-excess-based model. Geophysical Research Letters, 48(21): e2021GL095909. doi: https://doi.org/10.1029/2021GL095909

    Article  Google Scholar 

  • Zhang Xinping, Liu Jingmiao, Nakawo M et al., 2009. Vapor origins revealed by deuterium excess in precipitation in southwest China. Journal of Glaciology and Geocryology, 31(4): 613–619.

    Google Scholar 

  • Zhang Xinping, Sun Weizhen, Liu Jingmiao, 2005. Stable isotopes in precipitation in the vapor transport path in Kunming of Southwest China. Resources and Environment in the Yangtze Basin, 14(5): 665–669. (in Chinese)

    Google Scholar 

  • Zhang Yili, Li Bingyuan, Liu Linshan et al., 2021. Redetermine the region and boundaries of Tibetan Plateau. Geographical Research, 40(6): 1543–1553. (in Chinese)

    Google Scholar 

  • Zhao J Y, Tan L C, Li D et al., 2022. The seasonally altered atmosphere moisture circulations with rainfall and rainfall isotopes in Southwest China. Frontiers in Earth Science, 10: 795857. doi: https://doi.org/10.3389/feart.2022.795857

    Article  Google Scholar 

  • Zheng Shuhui, Hou Fagao, Ni Baoling, 1983. The research of hydrogen and oxygen stable isotopes of atmospheric precipitation in China. Chinese Science Bulletin, 28(13): 801–806. (in Chinese)

    Google Scholar 

  • Zhu G F, Guo H W, Qin D H et al., 2019. Contribution of recycled moisture to precipitation in the monsoon marginal zone: estimate based on stable isotope data. Journal of Hydrology, 569: 423–435. doi: https://doi.org/10.1016/j.jhydrol.2018.12.014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation were performed by PU Tao and MA Xinggang. Data collection and analysis were performed by SHI Xiaoyi and YU Hongmei. The first draft of the manuscript was written by MA Yanwei and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaoyi Shi.

Ethics declarations

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Foundation item: Under the auspices of National Natural Science Foundation of China (No. 42101044, 42077188, 52109007)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Pu, T., Shi, X. et al. Quantifying the Contribution of Recycled Moisture to Precipitation in Temperate Glacier Region, Southeastern Tibetan Plateau, China. Chin. Geogr. Sci. 34, 764–776 (2024). https://doi.org/10.1007/s11769-024-1437-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-024-1437-6

Keywords

Navigation