Skip to main content
Log in

Response of Soil Moisture to Rainfall Event in Black Locust Plantations at Different Stages of Restoration in Hilly-gully Area of the Loess Plateau, China

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Precipitation plays an important role in the water supplies that support ecological restoration by sustaining large-scale artificial plantations in arid and semiarid regions, especially black locust (Robinia pseudoacacia) plantations (RP plantations), which are widely planted due to R. pseudoacacia being an excellent pioneer species. Characterizing the response of soil moisture to rainfall events at different stages of restoration is important for assessing the sustainability of restoration in RP plantations. In this study, we quantified the response of soil moisture to rainfall events at different years of restoration (15, 20 and 30 yr) representing different restoration stages in RP plantations in a typical hilly-gully area, i.e., the Yangjuangou Catchment, of the Loess Plateau, China. Over the growing season (June to September) of 2017, smart probes were placed at nine depths (10, 20, 40, 60, 80, 100, 120, 150, and 180 cm below the soil surface) to obtain volumetric soil water information at 30-min intervals in the three RP plantations. The advance of the wetting front was depicted, and the total cumulative water infiltration was measured. Soil moisture was mainly replenished by eight heavy rainfall events (mean rainfall amount = 46.3 mm), accounting for 88.7% of the rainfall during the growing season. The mean soil moisture content profiles of RP plantations at the three restoration stages were ordered as 30-yr (14.07%) > 20-yr (10.12%) > 15-yr (8.03%), and this relationship displayed temporal stability. Soil moisture was primarily replenished by rainfall at the 0–60 cm soil depth, and soil moisture remained stable below the 100-cm soil depth. The rainfall regime influenced the advancement of the wetting front. Here, a single rainfall event of 30 mm was the rainfall threshold for infiltration into the 60-cm soil layer. The total infiltration time ranged from 310.5–322.0 h, but no significant differences were found among RP plantations at different restoration stages. Young and old RP plantations had more total infiltration (more than 228.2 mm) and deeper infiltration depths (80–100 cm) than middle-aged plantations. The RP plantation at the intermediate restoration stage exhibited minimal total infiltration (174.2 mm) and a shallow infiltration depth (60 cm) due to the soil physical structure of the plot, which may have limited rain infiltration. More stand conditions that may affect infiltration should be considered for priority afforestation areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Download references

Acknowledgement

The authors thank Liu Jianbo and An Nannan for their generous assistance and support with the field work and writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongshan Li.

Additional information

Foundation item: Under the auspices of the National Key Research and Development Program of China (No. 2016YFC0501602, 2017YFC0504701), National Natural Science Foundation of China (No. 41877539)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Li, Z., Jiao, L. et al. Response of Soil Moisture to Rainfall Event in Black Locust Plantations at Different Stages of Restoration in Hilly-gully Area of the Loess Plateau, China. Chin. Geogr. Sci. 30, 427–445 (2020). https://doi.org/10.1007/s11769-020-1121-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-020-1121-4

Keywords

Navigation