Stable Isotope Signatures and Moisture Transport of a Typical Heavy Precipitation Case in the Southern Tianshan Mountains

Abstract

Stable oxygen isotopes in precipitation contain meaningful environmental information on a synoptic scale and can be applied to diagnose hydrometeorological processes. A series of rainstorms occurred at the southern Tianshan Mountains during the period from May to June 2013, and the event-based precipitation was sampled along the mountain range from west to east. Based on δ18O values in precipitation samples as well as the corresponding meteorological parameters, the moisture transport paths during the sampling period were identified. In late-May (stage 1), isotopes in precipitation collected generally showed a depleting trend. In mid-June (stage 2), there was no coherent trend of isotopes in precipitation for these stations, and only isotope values in Aksu showed a continually depleting trend. Checking other meteorological proxies during the sampling period, the event-based precipitation isotopes sensitively reflected the moisture process. In central Asia, both the westerly and monsoon moisture can be delivered to cause extreme precipitation events, and the isotopic information provides an alternative tool to investigate the atmospheric processes.

This is a preview of subscription content, access via your institution.

References

  1. Alexander L V, Zhang X, Peterson T C et al., 2006. Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, 111(D5): D05109. doi: https://doi.org/10.1029/2005JD006290

    Google Scholar 

  2. Araguás-Araguás L, Froehlich K, Rozanski K, 1998. Stable isotope composition of precipitation over southeast Asia. Journal of Geophysical Research, 103(D22): 28721–28742. doi: https://doi.org/10.1029/98JD02582

    Google Scholar 

  3. Bowen G J, Cai Z, Fiorella R P et al., 2019. Isotopes in the water cycle: regional- to global-scale patterns and applications. Annual Review of Earth and Planetary Sciences, 47: 453–179. doi: https://doi.org/10.1146/annurev-earth-053018-060220

    Google Scholar 

  4. Chen A, He X, Guan H et al., 2019. Variability of seasonal precipitation extremes over China and their associations with large-scale ocean-atmosphere oscillations. International Journal of Climatology, 39(2): 613–628. doi: https://doi.org/10.1002/joc.5830

    Google Scholar 

  5. Esquivel Hernández G, Mosquera G M, Sánchez Murillo R et al., 2019. Moisture transport and seasonal variations in the stable isotopic composition of rainfall in Central American and Andean Páramo during El Nino conditions (2015–2016). Hydrological Processes, 33(13): 1802–1817. doi: https://doi.org/10.1002/hyp.13438

    Google Scholar 

  6. Gimeno L, Stohl A, Trigo R M et al., 2012. Oceanic and terrestrial sources of continental precipitation. Reviews of Geophysics, 50(4): RG4003. doi: https://doi.org/10.1029/2012RG000389

    Google Scholar 

  7. Huang A, Zhao Y, Zhou Y et al., 2016. Evaluation of multisatellite precipitation products by use of ground-based data over China. Journal of Geophysical Research: Atmospheres, 121(18): 10654–10675. doi: https://doi.org/10.1002/2016JD025456

    Google Scholar 

  8. Jouzel J, Merlivat L, Roth E, 1975. Isotopic study of hail. Journal of Geophysical Research, 80(36): 5015–5030. doi: https://doi.org/10.1029/JC080i036p05015

    Google Scholar 

  9. Joyce R J, Janowiak J E, Arkin P A et al., 2004. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5(3): 487–503. doi: https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2

    Google Scholar 

  10. Kistler R, Kalnay E, Collins W et al., 2001. The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bulletin of the American Meteorological Society, 82(2): 247–268. doi: https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2

    Google Scholar 

  11. Klein Tank A MG, Peterson T C, Quadir D A et al., 2006. Changes in daily temperature and precipitation extremes in central and south Asia. Journal of Geophysical Research, 111(D16): D16105. doi: https://doi.org/10.1029/2005JD006316

    Google Scholar 

  12. Li J, Tao T, Pang Z et al., 2015a. Identification of different moisture sources through isotopic monitoring during a storm event. Journal of Hydrometeorology, 16(4): 1918–1927. doi: https://doi.org/10.1175/JHM-D-15-0005.1

    Google Scholar 

  13. Li Z, Gao Y, Wang Y et al., 2015b. Can monsoon moisture arrive in the Qilian Mountains in summer? Quaternary International, 358: 113–125. doi: https://doi.org/10.1016/j.quaint.2014.08.046

    Google Scholar 

  14. Li Z, Gui J, Wang X et al., 2019. Water resources in inland regions of central Asia: evidence from stable isotope tracing. Journal of Hydrology, 570: 1–16. doi: https://doi.org/10.1016/j.jhydrol.2019.01.003

    Google Scholar 

  15. Li Zhongqin, Li Huilin, Dong Zhiwen et al., 2010. Chemical characteristics and environmental significance of fresh snow deposition on Urumqi Glacier No. 1 of Tianshan Mountains, China. Chinese Geographical Science, 20(5): 389–397. doi: https://doi.org/10.1007/s11769-010-0412-6

    Google Scholar 

  16. Liu X, Rao Z, Zhang X et al., 2015. Variations in the oxygen isotopic composition of precipitation in the Tianshan Mountains region and their significance for the Westerly circulation. Journal of Geographical Sciences, 25(7): 801–816. doi: https://doi.org/10.1007/s11442-015-1203-x

    Google Scholar 

  17. Meng X, Long A, Wu Y et al., 2018. Simulation and spatiotemporal pattern of air temperature and precipitation in Eastern Central Asia using RegCM. Scientific Report, 8: 3639. doi: https://doi.org/10.1038/s41598-018-21997-4

    Google Scholar 

  18. Pang Z, Kong Y, Froehlich K et al., 2011. Processes affecting isotopes in precipitation of an arid region. Tellus B, 63(3): 352–359. doi: https://doi.org/10.1111/j.1600-0889.2011.00532.x

    Google Scholar 

  19. Tian L, Yao T, MacClune K et al., 2007. Stable isotopic variations in west China: A consideration of moisture sources. Journal of Geophysical Research, 112(D10): D10112. doi: https://doi.org/10.1029/2006JD007718

    Google Scholar 

  20. Wang L, Dong Y, Han D et al., 2019. Stable isotopic compositions in precipitation over wet island in Central Asia. Journal of Hydrology, 573: 581–591. doi: https://doi.org/10.1016/j.jhydrol.2019.04.005

    Google Scholar 

  21. Wang S, Zhang M, Che Y et al., 2016a. Contribution of recycled moisture to precipitation in oases of arid central Asia: a stable isotope approach. Water Resources Research, 52(4): 3246–3257. doi: https://doi.org/10.1002/2015WR018135

    Google Scholar 

  22. Wang S, Zhang M, Che Y et al., 2016b. Influence of below-cloud evaporation on deuterium excess in precipitation of arid central Asia and its meteorological controls. Journal of Hydrometeorology, 17(7): 1973–1984. doi: https://doi.org/10.1175/JHM-D-15-0203.1

    Google Scholar 

  23. Wang S, Zhang M, Crawford J et al., 2017. The effect of moisture source and synoptic conditions on precipitation isotopes in arid central Asia. Journal of Geophysical Research: Atmospheres, 122(5): 2667–2682. doi: https://doi.org/10.1002/2015JD024626

    Google Scholar 

  24. Wang S, Zhang M, Hughes C E et al., 2016c. Factors controlling stable isotope composition of precipitation in arid conditions: an observation network in the Tianshan Mountains, central Asia. Tellus B, 68(1): 26206. doi: https://doi.org/10.3402/tellusb.v68.26206

    Google Scholar 

  25. Wu H, Zhang X, Li X et al., 2015. Seasonal variations of deuterium and oxygen-18 isotopes and their response to moisture source for precipitation events in the subtropical monsoon region. Hydrological Processes, 29(1): 90–102. doi: https://doi.org/10.1002/hyp.10132

    Google Scholar 

  26. Yang Lianmei, Guan Xuefeng, Zhang Yingxin, 2018. Atmospheric circulation characteristics of precipitation anomaly in arid regions in central Asia. Arid Zone Research, 35(2): 249–259. (in Chinese)

    Google Scholar 

  27. Yang Lianmei, Li Xia, Zhang Guangxing, 2011. Some advances and problems in the study of heavy rain in Xinjiang. Climatic and Environmental Research, 16(2): 188–198. (in Chinese)

    Google Scholar 

  28. Yang Sen, Zhang Mingjun, Wang Shengjie, 2018. Affecting mechanism of moisture sources of isotopes in precipitation in the Tianshan Mountains based on GCMs and ice core. Arid Zone Research, 35(2): 425–435. (in Chinese)

    Google Scholar 

  29. Yang Y, Luo Y, 2014. Evaluating the performance of remote sensing precipitation products CMORPH, PERSIANN, and TMPA, in the arid region of northwest China. Theoretical and Applied Climatology, 118(3): 429–445. doi: https://doi.org/10.1007/s00704-013-1072-0

    Google Scholar 

  30. Yao Junqiang, Yang Qing, Mao Weiyi et al., 2018. Progress of study on variation of atmospheric water cycle factors over arid region in Northwest China. Arid Zone Research, 35(2): 269–276. (in Chinese)

    Google Scholar 

  31. Yao J, Zhao Y, Chen Y et al., 2018. Multi-scale assessments of droughts: A case study in Xinjiang, China. Science of the Total Environment, 630: 444–452. doi: https://doi.org/10.1016/j.scitotenv.2018.02.200

    Google Scholar 

  32. Zhang Jiabao, Deng Zifeng, 1987. An Introduction to Precipitation in Xinjiang. Beijing: China Meteorological Press. (in Chinese)

    Google Scholar 

  33. Zhang Junlan, Wei Rongqing, Yang Liu, 2014. Comparison of precipitation area and intensity of two rare heavy rainfall over Southern Xinjiang in 2013. Desert and Oasis Meteorology, 8(5): 1–9. (in Chinese)

    Google Scholar 

  34. Zhang M, Chen Y, Shen Y et al., 2017. Changes of precipitation extremes in arid Central Asia. Quaternary International, 436(A): 16–27. doi: https://doi.org/10.1016/j.quaint.2016.12.024

    Google Scholar 

  35. Zhang M, Wang S, 2016. A review of precipitation isotope studies in China: basic pattern and hydrological process. Journal of Geographical Sciences, 26(7): 921–938. doi: https://doi.org/10.1007/s11442-016-1307-y

    Google Scholar 

  36. Zhang M, Wang S, 2018. Precipitation isotopes in the Tianshan Mountains as a key to water cycle in arid central Asia. Sciences in Cold and Arid Regions, 10(1): 27–37. doi: https://doi.org/10.3724/SP.J.1226.2018.00027

    Google Scholar 

  37. Zhang Yunhui, Li Haiyan, Lin Xilu et al., 2015. Analysis of continuous rainstorm circulation background and the dynamic process of synoptic-scale in west of Southern Xinjiang. Meteorological Monthly, 41(7): 816–824. (in Chinese)

    Google Scholar 

  38. Zhao Keming, Huang Yan, Yu Bixin, 2017. Water vapor characteristics of rainstorm weather processes over western South Xinjiang in 2013. Meteorological Science and Technology, 45(1): 121–129. (in Chinese)

    Google Scholar 

  39. Zhao Shixiong, 1988. Isotopic study of hailstones on the plateau. Acta Meteorologica Sinica, 2(3): 394–403. (in Chinese)

    Google Scholar 

  40. Zhao Yong, Huang Anning, Wang Qian et al., 2016. The relation between thermal anomaly contrast over the Tibetan Plateau and its surrounding areas in May and summer rainfall in Northern Xinjiang. Climatic and Environmental Research, 21(6): 653–662. (in Chinese)

    Google Scholar 

  41. Zheng Z, Ma Z, Li M et al., 2017. Regional water budgets and hydroclimatic trend variations in Xinjiang from 1951 to 2000. Climatic Change, 144(3): 447–460. doi: https://doi.org/10.1007/s10584-016-1842-7

    Google Scholar 

Download references

Acknowledgements

The authors greatly thank the prefecture meteorological bureaus of Aksu and Kizilsu and four meteorological stations (Wuqia, Akqi, Aksu and Baicheng) for collecting the precipitation samples and the colleagues in the Northwest Normal University for their help in laboratory analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gaofei Wang.

Additional information

Foundation item

Under the auspices of National Natural Science Foundation of China (No. 41701028, 41971034, 41161012), Scientific Research Program of Higher Education Institutions of Gansu Province (No. 2018C-02)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, M., Wang, S. et al. Stable Isotope Signatures and Moisture Transport of a Typical Heavy Precipitation Case in the Southern Tianshan Mountains. Chin. Geogr. Sci. 30, 180–188 (2020). https://doi.org/10.1007/s11769-019-1091-6

Download citation

Keywords

  • precipitation
  • stable isotope
  • moisture source
  • Tianshan Mountains