Skip to main content
Log in

Effect of Mathematical Expression of Vegetation Indices on the Estimation of Phenology Trends from Satellite Data

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Vegetation indices (VIs) from satellite remote sensing have been extensively applied to analyze the trends of vegetation phenology. In this paper, the NDVI (normalized difference vegetation index) and SR (simple ration), which are calculated from the same spectral bands of MODIS data with different mathematical expressions, were used to extract the start date (SOS) and end date (EOS) of the growing season in northern China and Mongolia from 2000 to 2015. The results show that different vegetation indices would lead to differences in vegetation phenology especially in their trends. The mean SOS from NDVI is 15.5 d earlier than that from SR, and the mean EOS from NDVI is 13.4 d later than that from SR. It should be noted that 16.3% of SOS and 17.2% of EOS derived from NDVI and SR exhibit opposite trends. The phenology dates and trends from NDVI are also inconsistent with those of SR among various vegetation types. These differences based on different mathematical expressions in NDVI and SR result from different resistances to noise and sensitivities to spectral signal at different stage of growing season. NDVI is prone to be effected more by low noise and is less sensitive to dense vegetation. While SR is affected more by high noise and is less sensitive to sparse vegetation. Therefore, vegetation indices are one of the uncertainty sources of remote sensing-based phenology, and appropriate indices should be used to detect vegetation phenology for different growth stages and estimate phenology trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atzberger C, Klisch A, Mattiuzzi M et al., 2014. Phenological Metrics Derived over the European Continent from NDVI3g Data and MODIS Time Series. Remote Sensing, 6(1): 257–284. doi: 10.3390/rs6010257

    Article  Google Scholar 

  • Balzarolo M, Vicca S, Nguy-Robertson A L et al., 2016. Matching the phenology of Net Ecosystem Exchange and vegetation indices estimated with MODIS and FLUXNET in-situ observations. Remote Sensing of Environment, 174: 290–300. doi: 10.1016/j.rse.2015.12.017

    Article  Google Scholar 

  • Beck P S A, Atzberger C, Høgda K A et al., 2006. Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI. Remote Sensing of Environment, 100(3): 321–334. doi: 10.1016/j.rse.2005.10.021

    Article  Google Scholar 

  • Bradley B A, Jacob R W, Hermance J F et al., 2007. A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data. Remote Sensing of Environment, 106(2): 137–145. doi: 10.1016/j.rse.2006.08.002

    Article  Google Scholar 

  • Buitenwerf R, Rose L, Higgins S I, 2015. Three decades of multi-dimensional change in global leaf phenology. Nature Climate Change, 5(4): 364–368. doi: 10.1038/nclimate2533

    Article  Google Scholar 

  • Chen J M, Pavlic G, Brown L et al., 2002. Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements. Remote Sensing of Environment, 80(1): 165–184. doi: 10.1016/S0034-4257(01)00300-5

    Article  Google Scholar 

  • Chuine I, Morin X, Bugmann H, 2010. Warming, Photoperiods, and Tree Phenology. Science, 329(5989): 277–278. doi:10.1126/science.329.5989.277-e

    Article  Google Scholar 

  • Cong N, Wang T, Nan H J et al., 2013. Changes in satellite- derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: a multimethod analysis. Global Change Biology, 19(3): 881–891. doi: 10.1111/gcb. 12077

    Article  Google Scholar 

  • de Beurs K M, Henebry G M, 2005. Land surface phenology and temperature variation in the International Geosphere- Biosphere Program high-latitude transects. Global Change Biology, 11(5): 779–790. doi: 10.1111/j.1365-2486.2005. 00949.x

    Article  Google Scholar 

  • Delpierre N, Dufrêne E, Soudani K et al., 2009. Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agricultural and Forest Meteorology, 149(6-7): 938–948. doi: 10.1016/j.agrformet.2008.11.014

    Article  Google Scholar 

  • Ding M J, Li L H, Zhang Y L et al., 2015. Start of vegetation growing season on the Tibetan Plateau inferred from multiple methods based on GIMMS and SPOT NDVI data. Journal of Geographical Sciences, 25(2): 131–148. doi: 10.1007/s11442-015-1158-y

    Article  Google Scholar 

  • D’Odorico P, Gonsamo A, Gough C M et al., 2015. The match and mismatch between photosynthesis and land surface phenology of deciduous forests. Agricultural and Forest Meteorology, 214–215: 25–38. doi: 10.1016/j.agrformet.2015.07. 005

    Article  Google Scholar 

  • Fu Y H, Zhao H F, Piao S L et al., 2015. Declining global warming effects on the phenology of spring leaf unfolding. Nature, 526(7571): 104–107. doi: 10.1038/nature15402

    Article  Google Scholar 

  • Garonna I, de Jong R, Schaepman M E, 2016. Variability and evolution of global land surface phenology over the past three decades (1982–2012). Global Change Biology, 22(4): 1456–1468. doi: 10.1111/gcb.13168.

    Article  Google Scholar 

  • Garrity S R, Bohrer G, Maurer K D et al., 2011. A comparison of multiple phenology data sources for estimating seasonal transitions in deciduous forest carbon exchange. Agricultural and Forest Meteorology, 151(12): 1741–1752. doi: 10.1016/j.agrformet.2011.07.008

    Article  Google Scholar 

  • Ge Q S, Wang H J, Rutishauser T et al., 2015. Phenological response to climate change in China: a meta-analysis. Global Change Biology, 21(1): 265–274. doi: 10.1111/gcb.12648

    Article  Google Scholar 

  • Guo L, An Ning, Kaicun W, 2016. Reconciling the discrepancy in ground- and satellite-observed trends in the spring phenology of winter wheat in China from 1993 to 2008. Journal of Geophysical Research: Atmospheres, 121: 1027–42. doi: 10.1002/ 2015JD023969

    Google Scholar 

  • Helman D, 2018. Land surface phenology: what do we really ‘see’ from space? Science of the Total Environment, 618: 665–673. doi: 10.1016/j.scitotenv.2017.07.237

    Article  Google Scholar 

  • Hird J N, McDermid G J, 2009. Noise reduction of NDVI time series: an empirical comparison of selected techniques. Remote Sensing of Environment, 113(1): 248–258. doi: 10.1016/j.rse.2008.09.003

    Article  Google Scholar 

  • Huete A, Didan K, Miura T et al., 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1–2): 195–213. doi: 10.1016/S0034-4257(02)00096-2

    Article  Google Scholar 

  • Jeganathan C, Dash J, Atkinson P M, 2014. Remotely sensed trends in the phenology of northern high latitude terrestrial vegetation, controlling for land cover change and vegetation type. Remote Sensing of Environment, 143: 154–170. doi: 10.1016/j.rse.2013.11.020

    Article  Google Scholar 

  • Jeong S J, Ho C H, Gim H J et al., 2011. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Global Change Biology, 17(7): 2385–2399. doi: 10.1111/j.1365-2486. 2011.02397.x

    Article  Google Scholar 

  • Jin H X, Eklundh L, 2014. A physically based vegetation index for improved monitoring of plant phenology. Remote Sensing of Environment, 152: 512–525. doi: 10.1016/j.rse.2014.07.010

    Article  Google Scholar 

  • Karkauskaite P, Tagesson T, Fensholt R, 2017. Evaluation of the Plant Phenology Index (PPI), NDVI and EVI for start-of-season trend analysis of the northern hemisphere boreal zone. Remote Sensing, 9(5): 485. doi: 10.3390/ rs9050485

    Article  Google Scholar 

  • Liang L, Schwartz M D, Fei S L, 2011. Validating satellite phenology through intensive ground observation and landscape scaling in a mixed seasonal forest. Remote Sensing of Environment, 115(1): 143–157. doi: 10.1016/j.rse.2010.08.013

    Article  Google Scholar 

  • Lieth H, Radford J S, 1971. Phenology, resource management, and synagraphic computer mapping. BioScience, 21(881): 62–70. doi: 10.2307/1295541

    Article  Google Scholar 

  • Liu R G, Liu Y, 2013. Generation of new cloud masks from MODIS land surface reflectance products. Remote Sensing of Environment, 133: 21–37. doi: 10.1016/j.rse.2013.01.019

    Article  Google Scholar 

  • Liu R G, Shang R, Liu Y et al., 2017. Global evaluation of gap-filling approaches for seasonal NDVI with considering vegetation growth trajectory, protection of key point, noise resistance and curve stability. Remote Sensing of Environment, 189: 164–179. doi: 10.1016/j.rse.2016.11.023

    Article  Google Scholar 

  • Menzel A, Sparks T H, Estrella N et al., 2006. European phenological response to climate change matches the warming pattern. Global Change Biology, 12(10): 1969–1976. doi: 10.1111/j.1365-2486.2006.01193.x.

    Article  Google Scholar 

  • Mutanga O, Skidmore A K, 2004. Narrow band vegetation indices overcome the saturation problem in biomass estimation. International Journal of Remote Sensing, 25(19): 3999–4014. doi: 10.1080/01431160310001654923

    Article  Google Scholar 

  • Nagai S, Nasahara K N, Muraoka H et al., 2010. Field experiments to test the use of the normalized-difference vegetation index for phenology detection. Agricultural and Forest Meteorology, 150(2): 152–160. doi: 10.1016/j.agrformet.2009.09. 010

    Article  Google Scholar 

  • Peng S S, Piao S L, Ciais P et al., 2013. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature, 501(7465): 88–92. doi: 10.1038/nature 1243

    Article  Google Scholar 

  • Peñuelas J, Filella I, 2001. Phenology; Responses to a warming world. Science, 294(5543): 793–795. doi: 10.1126/science. 1066860

    Article  Google Scholar 

  • Piao S L, Fang J Y, Zhou L M et al., 2006. Variations in satellite- derived phenology in China’s temperate vegetation. Global Change Biology, 12(4): 672–685. doi: 10.1111/j.1365- 2486. 2006.01123.x

    Article  Google Scholar 

  • Piao S L, Tan J G, Chen A P et al., 2015. Leaf onset in the northern hemisphere triggered by daytime temperature. Nature Communications, 6. 6911. doi: 10.1038/ncomms7911

    Article  Google Scholar 

  • Richardson A D, Black T A, Ciais P et al., 2010. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1555): 3227–3246. doi: 10.1098/rstb.2010.0102

    Article  Google Scholar 

  • Schwartz M D, Ahas R, Aasa A, 2006. Onset of spring starting earlier across the Northern Hemisphere. Global Change Biology, 12(2): 343–351. doi: 10.1111/j.1365-2486.2005.01097.x

    Article  Google Scholar 

  • Slayback D A, Pinzon J E, Los S O et al., 2003. Northern hemisphere photosynthetic trends 1982–99. Global Change Biology, 9(1): 1–15. doi: 10.1046/j.1365-2486.2003.00507.x

    Article  Google Scholar 

  • Steltzer H, Post E, 2009. Seasons and Life Cycles. Science, 324(5929): 886–887. doi: 10.1126/science.1171542

    Article  Google Scholar 

  • Studer S, Stockli R, Appenzeller C et al., 2007. A comparative study of satellite and ground-based phenology. International Journal of Biometeorology, 51(5): 405–414. doi: 10.1007/s00484-006-0080-5

    Article  Google Scholar 

  • Vermote E F, Kotchenova S, 2008. Atmospheric correction for the monitoring of land surfaces. Journal of Geophysical Research-Atmospheres, 113(D23): D23S90. doi: 10.1029/2007 JD009662

    Article  Google Scholar 

  • Viña A, Gitelson A A, Nguy-Robertson A L et al., 2011. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sensing of Environment, 115(12): 3468–3478. doi: 10.1016/j.rse.2011. 08.010

    Article  Google Scholar 

  • White K, Pontius J, Schaberg P, 2014. Remote sensing of spring phenology in northeastern forests: a comparison of methods, field metrics and sources of uncertainty. Remote Sensing of Environment, 148: 97–107. doi: 10.1016/j.rse.2014.03.017

    Article  Google Scholar 

  • White M A, de Beurs K M, Didan K et al., 2009. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Global Change Biology, 15(10): 2335–2359. doi: 10.1111/ j.1365-2486.2009.01910.x

    Article  Google Scholar 

  • Wu C Y, Gonsamo A, Gough C M et al., 2014. Modeling growing season phenology in North American forests using seasonal mean vegetation indices from MODIS. Remote Sensing of Environment, 147: 79–88. doi: 10.1016/j.rse.2014.03.001

    Article  Google Scholar 

  • Wu C Y, Hou X H, Peng D L et al., 2016. Land surface phenology of China’s temperate ecosystems over 1999–2013: Spatial- temporal patterns, interaction effects, covariation with climate and implications for productivity. Agricultural and Forest Meteorology, 216: 177–187. doi: 10.1016/j.agrformet. 2015.10.015

    Article  Google Scholar 

  • Yang Y T, Guan H D, Shen M G et al., 2015. Changes in autumn vegetation dormancy onset date and the climate controls across temperate ecosystems in China from 1982 to 2010. Global Chang Biology, 21(2): 652–665. doi: 10.1111/gcb. 12778

    Article  Google Scholar 

  • Zhang G L, Zhang Y J, Dong J W et al., 2013. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proceedings of the National Academy of Sciences of the United States of America, 110(11): 4309–4314. doi: 10.1073/ pnas.1210423110

    Article  Google Scholar 

  • Zhang X Y, Friedl M A, Schaaf C B et al., 2003. Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, 84(3): 471–475. doi: 10.1016/S0034-4257(02) 00135-9

    Article  Google Scholar 

  • Zhang X Y, Friedl M A, Schaaf C B et al., 2004. Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Global Change Biology, 10(7): 1133–1145. doi: 10.1111/j.1529-8817.2003.00784.x

    Article  Google Scholar 

  • Zhang X Y, Friedl M A, Schaaf C B, 2006. Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): evaluation of global patterns and comparison with in situ measurements. Journal of Geophysical Research- Biogeosciences, 111(G4): G04017. doi: 10.1029/2006 JG000217

    Article  Google Scholar 

  • Zhao Hu, Yang Zhengwei, Li Lin et al., 2011. Improvement and comparative analysis of indices of crop growth condition monitoring by remote sensing. Transactions of the Chinese Society of Agricultural Engineering, 2 (1): 243–249. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronggao Liu.

Additional information

Foundation item: Under the auspices of the Strategic Priority Research Program of the Chinese Academy Sciences (No. XDA19080303), the National Key Research and Development Program for Global Change and Adaptation (No. 2016YFA0600201), the Distinctive Institutes Development Program, Chinese Academy of Sciences (No. TSYJS04), the National Natural Sciences Foudation of China (No. 41171285)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, L., Liu, R., Liu, Y. et al. Effect of Mathematical Expression of Vegetation Indices on the Estimation of Phenology Trends from Satellite Data. Chin. Geogr. Sci. 29, 756–767 (2019). https://doi.org/10.1007/s11769-019-1070-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-019-1070-y

Keywords

Navigation