Skip to main content

Advertisement

Log in

Remote Sensing Monitoring of Surface Characteristics in the Badain Jaran, Tengger, and Ulan Buh Deserts of China

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Deserts and sandy land in northern China are very susceptible to sandy desertification and are the main source of sand-dust storms of Asian dust. However, because of the complex factors involved, descriptions of the relationship between sandy desertification and surface characteristics in these regions are lacking. We monitored the surface characteristics and their changes in time using information about soil, vegetation, and landforms in the Badain Jaran Desert (BJD), Tengger Desert (TD), and Ulan Buh Desert (UBD) in the northern China. The monitoring was done using tasseled cap angle (TCA), disturbance index (DI), and topsoil grain size index (TGSI) from Moderate Resolution Imaging Spectroradiometer (MODIS) images combined with a decision tree classification. Results showed that the TD had higher topsoil fine sand content, and the ratio of non-vegetated to vegetated areas was similar with that in the UBD. Northeast-southwest coarse sand dunes with thin interdune (NECTI) dominated the BD, fine sand dunes (FSD) dominated the TD, and a combination of northeast-southwest coarse sand dunes with wide interdune (NECWI) and northwest-southeast coarse sand dunes with wide interdune (NWCWI) dominated the UBD. From 2000 to 2015, in the BJD the area of the NECTI, non-sand dune (Non) and potential sand sources (PSS) increased, whereas the area of the NECWI, FSD and NWCWI decreased, indicating a improve process in the BJD. In the TD, the area covered by Non increased, whereas the area covered by PSS, NECWI, NECTI, FSD, and NWCWI decreased from 2000 to 2015. The area covered by the various surface characteristic types fluctuated annually in the UBD from 2000 to 2015. Changes in surface characteristics reflect the combined effects of natural conditions and human activity. The findings of our study will assist scientists and policy makers in proposing different management techniques to combat sandy desertification for the different surface characteristics of these regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • References

  • Anthony E J, Ruz M H, Vanhee S, 2009. Aeolian sand transport over complex intertidal bar-trough beach topography. Geomorphology, 105: 95–105. doi: 10.1016/j.geomorph.2007.12.013

    Article  Google Scholar 

  • Butterfield G R, 1998. Transitional behavior of saltation: wind tunnel observation of unsteady wind. Journal of Arid Environments, 39: 377–394.

    Article  Google Scholar 

  • Cai D H, Zhao J H, Li Y H et al., 2011. Influence of changes of underlying surface on the output of sand-dust model. Proceedings of the International Geoscience and Remote Sensing Symposium 2011, Vancouver, BC, Canada.

    Google Scholar 

  • Carlson T N, Ripley D A, 1997. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62(3): 241–252. doi: 10.1016/S0034-4257(97)00104-1

    Article  Google Scholar 

  • Chen F H, Li G Q, Zhao H et al., 2014. Landscape evolution of the Ulan Buh Desert in Northern China during the late quaternary. Quaternary Research, 81(3): 476–487. doi: 10.1016/j.yqres.2013.08.005

    Article  Google Scholar 

  • Chun X, Chen F H, Fan Y X et al., 2008. Formation of Ulan Buh Desert and its environmental changes during the Holocene. Frontiers of Earth Science in China, 2(3): 327–332. doi: 10.1007/s11707-008-0039-4

    Article  Google Scholar 

  • Cong Diange, Pang Hongli, Fang Miao et al., 2014. Dunes distribution study on north of Tengery desert based on remote sensing and DEM. China Mining Magazine, 23(supp. 2): 153–159. (in Chinese)

    Google Scholar 

  • Dong Z B, Wang H T, Liu X P et al., 2004. The blown sand flux over a sandy surface: a wind tunnel investigation on the fetch effect. Geomorphology, 57: 117–127. doi: 10.1016/S0169-555X(03)00087-4

    Article  Google Scholar 

  • Dong Z B, Zhang Z C, Lv P et al., 2011. An Aeolian transport model for flat shifting sand fields under dynamic-limiting conditions. Journal of Arid Environments, 75: 865–869. doi: 10.1016/j.jaridenv.2011.03.012

    Article  Google Scholar 

  • Du Heqiang, Xue Xian, Sun Jiahuan, 2012. Underlying surface characteristics and observation of blown-sand movement in UlanBuh Desert along bank of Yellow River. Transactions of the Chinese Society of Agriculture Engineering, 28(22): 156–165. (in Chinese)

    Google Scholar 

  • Du Z Q, Xu X M, Zhang H et al., 2016. Geographical detector- based identification of the impact of major determinants on aeolian desertification risk. PLoS ONE, 11(3): e0151331. doi:10.1371/journal.pone.0151331

    Article  Google Scholar 

  • Duan H C, Wang T, Xue X et al., 2014. Dynamics of aeolian desertification and its driving forces in the Horqin Sandy Land, Northern China. Environment Monitoring and Assessment, 186: 6083–6096. doi: 10.1007/s10661-014-3841-3

    Article  Google Scholar 

  • Dymond J R, Stephens P R, Newsome P F et al., 1992. Percent vegetation cover of a degrading rangeland from SPOT. International Journal of Remote Sensing, 13(11): 1999–2007. doi: 10.1080/01431169208904248

    Article  Google Scholar 

  • Eckert S, Husler F, Liniger H et al., 2015. Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. Journal of Arid Environments, 113: 16–28. doi: 10.1016/j.jaridenv.2014.09.001

    Article  Google Scholar 

  • Eltahir M E, Nagi Z, Hu G D, 2009. Landscape change and sandy desertificaiton monitoring and assessment. American Journal of Environmental Sciences, 5(5): 633–638.

    Article  Google Scholar 

  • Fan Y X, Zhang F, Zhang F et al., 2016. History and mechanisms for the expansion of the Badain Jaran Desert, Northern China, Since 20 ka: geological and luminescence chronological evidence. The Holocene, 26(4): 532–548. doi: 10.1177/0959683615612588

    Article  Google Scholar 

  • Feng L L, Jia Z Q, Li Q X, 2016. The dynamic monitoring of aeolian desertification land distribution and its response to climate change in northern China. Scientific Report, 6: 39563. doi: 10.1038/srep39563

    Article  Google Scholar 

  • Gomez C, White J C, Wulder M A, 2011. Characterizing the state and processes of change in a dynamic forest environment using hierarchical spatio-temporal segmentation. Remote Sensing of Environment, 115: 1665–1679. doi: 10.1016/j.rse.2011.02.025

    Article  Google Scholar 

  • Gu Lei, Wang Liqiang, Li Mingzhi, 2011. Grain sources of the Alashan Desert and Loess Plateau in arid and semi-arid regions of Northwestern China. Journal of Arid Land Resources and Environment, 25(4): 45–49. (in Chinese)

    Google Scholar 

  • Guo J, Wang T, Xue X et al., 2010. Monitoring aeolian desertification process in Hulunbir grassland during 1975-2006, Northern China. Environment Monitoring and Assessment, 166: 563–571. doi: 10.1007/s10661-009-1023-5

    Article  Google Scholar 

  • Guo Z L, Huang N, Dong Z B et al., 2014. Wind erosion induced soil degradation in Northern China: status, measures and perspective, Sustainability, 6: 8951–8966. doi: 10.3390/su6128951

    Article  Google Scholar 

  • Healey S P, Cohen W B, Yang Z Q et al., 2005. Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection. Remote Sensing of Environment, 97: 301–310. doi: 10.1016/j.rse.2005.05.009

    Article  Google Scholar 

  • He Jingli, Guo Jianying, Xing Ende et al., 2012. Structure of wind-sand flow and law of dune movement along bank of Yellow River in Ulan Buh Desert. Transactions of the Chinese Society of Agricultural Engineering, 28(17): 71–77. (in Chinese)

    Google Scholar 

  • Huang L, Zhang Z S, Li X R, 2014. Carbon fixation and influencing factors of biological soil crusts in a revegetated area of the Tengger Desert, northern China. Journal of Arid Land, 6(6): 725–734. doi: 10.1007/s40333-014-0027-3

    Article  Google Scholar 

  • Huang S, Siegert F, 2006. Land cover classification optimized to detect areas at risk of desertification in North China based on SPOT VEGETATION imagery. Journal of Arid Environments, 67: 308–327. doi: 10.1016/j.jaridenv.2006.02.016

    Article  Google Scholar 

  • Hugenholtz C H, Levin N, Barchyn T E et al., 2012. Remote sensing and spatial analysis of aeolian sand dunes: a review and outlook. Earth-Science Reviews, 111: 319–334. doi: 10.1016/j.earscirev.2011.11.006

    Article  Google Scholar 

  • Jia Peng, Wang Naiang, Cheng Hongyi et al., 2015. A study on the range and area of Ulan Buh Desert based on 3S technology. Journal of Arid Land Resources and Environment, 29(12): 131–138. (in Chinese)

    Google Scholar 

  • Kosmas C, Kairis O, Karavitis C et al., 2014. Evaluation and selection of indicators for land degradation and desertification monitoring: methodological approach. Environmental Management, 54(5): 951–970. doi: 10.1007/s00267-013-0109-6

    Article  Google Scholar 

  • Lam D K, Remmel T K, Drezner T D, 2011. Tracking desertification in California using remote sensing: a sand dune encroachment approach. Remote Sensing, 3: 1–13. doi: 10.3390/rs3010001.

    Article  Google Scholar 

  • Lamchin M, Lee J Y, Lee W K et al., 2016. Assessment of land cover change and desertification using remote sensing technology in a local region of Mongolia. Advances in Space Research, 57: 64–77. doi: 10.1016/j.asr.2015.10.006

    Article  Google Scholar 

  • Leprieur C, Kerr Y H, Mastorchio S et al., Monitoring vegetation cover across semi-arid regions: comparison of remote observations from various scales. International Journal of Remote Sensing, 21(2): 281–300. doi: 10.1080/014311600210830

  • Li Enju, Dong Zhibao, Zhao Jingbo, 2011. Grain size distribution of the aeolian sediments on the stoss slope of a typical mega-dune in the Badain Jaran Desert. Arid Land Geography, 34(3): 471–478. (in Chinese)

    Google Scholar 

  • Li Enju, 2011. Comparison of Characteristics of Deposits of Badain Jardan Desert and Tengger Desert. Shaanxi Normal University. (in Chinese)

    Google Scholar 

  • Li G Q, Jin M, Chen X M et al., 2015. Environmental changes in the Ulan Buh Desert, southern Inner Mongolia, China since the middle Pleistocene based on sedimentology, chronology and proxy indexes. Quaternary Science Reviews, 128: 69–80. doi: 10.1016/j.quascirev.2015.09.010

    Article  Google Scholar 

  • Li J C, Zhao Y F, Liu H X et al., 2016. Sandy desertification cycles in the southwestern Mu Us Desert in China over the past 80 years recorded based on nebkha sediments. Aeolian Research, 20: 100–107.

    Article  Google Scholar 

  • Liang S L, 2000. Narrowband to broadband conversions of land surface albedo I Algorithms. Remote Sensing of Environment, 76: 213–238. doi: 10.1016/S0034-4257(00)00205-4

    Article  Google Scholar 

  • Liu Fang, Hao Yuguang, Xin Zhiming et al., 2017. Characteristics of soil wind erosion under different underlying surface conditions in Ulanbuh Desert. Scientia Silvae Sincae, 53(3): 128–137. (in Chinese)

    Google Scholar 

  • Liu F S, Chen Y, Lu H Y et al., 2017. Albedo indicating land degradation around the Badain Jaran Desert for better land resources utilization. Science of the Total Environment, 578: 67–73. doi: 10.1016/j.scitotenv.2016.06.171

    Article  Google Scholar 

  • Liu Haijiang, Chai Huixia, Cheng Weiming et al., 2008. A research of aeolian landform in northern China based on remote sensing imagery. Geographical Research, 27(1): 109–118. (in Chinese)

    Google Scholar 

  • Liu Q S, Liu G H, Huang C, 2018. Monitoring desertification processes in Mongolian Plateau using MODIS tasseled cap transformation and TGSI time series. Journal of Arid Land, 10(1): 12–26. doi: 10.1007/s40333-017-0109-0

    Article  Google Scholar 

  • Liu Q S, Liu G H, Huang C et al., 2017. Remotely sensed surface characteristics of three deserts in the Alxa Plateau, Inner Mongolia, China. Proceeding of IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2017), Fort Worth, Texas, USA.

    Google Scholar 

  • Liu Tao, Yang Xiaoping, Dong Jufeng et al., 2010. A preliminary study of relation between Megadune shape and wind regime in the Badain Jaran Desert. Journal of Desert Research, 30(6): 1285–1291. (in Chinese)

    Google Scholar 

  • Liu Yue, 2013. Research on Dynamic Change of Land Use in Ulan Buh Desert in Recent 40 Years. Inner Mongolia Normal University. (in Chinese)

    Google Scholar 

  • Liu Yingzi, 2013. The Morphology Characteristics and Formation of the Latticed Dunes of the Tengger Desert. Shaanxi Normal University. (in Chinese)

    Google Scholar 

  • Lobser S E, Cohen W B, 2007. MODIS tasselled cap: land cover characteristics expressed through transformed MODIS data. International Journal of Remote Sensing, 28(22): 5079–5101. doi: 10.1080/01431160701253303

    Article  Google Scholar 

  • Ning Kai, Li Zhuolun, Wang Naiang et al., 2013. Spatial characteristics of grain size and its environmental implication in the Badain Jaran Desert. Journal of Desert Research, 33(3): 642–648. doi: 10.7522/j.issn.1000-694X.2013.00092. (in Chinese)

    Google Scholar 

  • Nolet C, Poortinga A, Roosjen P et al., 2014. Measuring and modeling the effect of surface moisture on the spectral reflectance of coastal beach sand. PloS ONE, 9(11): e112151. doi: 10.1371/journal.pone.0112151

    Article  Google Scholar 

  • Potter C, Weigand J, 2016. Analysis of desert sand dune migration patterns from Landsat image time series for the southern California desert. Journal of Remote Sensing & GIS, 5: 164. doi: 10.4172/2469-4134.1000164.

    Google Scholar 

  • Powell S L, Cohen W B, Healey S P et al., 2010. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sensing of Environment, 114: 1053–1068. doi: 10.1016/j.rse.2009.12.018

    Article  Google Scholar 

  • Purevdor J T S, Tateishi R, Ishiyama T et al., 1998. Relationships between percent vegetation cover and vegetation indices. International Journal of Remote Sensing, 19(18): 3519–3535. doi: 10.1080/014311698213795

    Article  Google Scholar 

  • Qian Guangqiang, Dong Zhibao, Luo Wanyin et al., 2011. Grain size characteristics and spatial variation of surface sediments in the Badain Jaran Desert. Journal of Desert Research, 31(6): 1357–1364. (in Chinese)

    Google Scholar 

  • Qian Y B, Wu Z N, Yang Q et al., 2007. Ground-surface conditions of sand-dust event occurrences in the southern Junggar Basin of Xinjiang, China. Journal of Arid Environments, 70: 49–62. doi: 10.1016/j.jaridenv.2006.12.001

    Article  Google Scholar 

  • Shafie H, Hosseini S M, Amiri I, 2012. RS-based assessment of vegetation cover changes in Sistan Plain. International Journal of Forest, Soil and Erosion, 2(2): 97–100.

    Google Scholar 

  • Shao Tianjie, Zhao Jingbo, Dong Zhibao, 2013. Particle size composition and geomorphology zoning of the megadune in the Badain Jaran Desert. Journal of Mountain Science, 31(4): 434–441. (in Chinese)

    Google Scholar 

  • Shi P J, Yan P, Yuan Y et al., 2004. Wind erosion research in China: past, present and future. Progress in Physical Geography, 28(3): 366–386. doi: 10.1191/0309133304pp416ra

    Article  Google Scholar 

  • Song Yang, Quan Zhanjun, Liu Lianyou et al., 2005. The influence of different underlying surface on sand-dust storm in northern China. Journal of Geographical Sciences, 15(4): 431–438.

    Article  Google Scholar 

  • Sternberg T, Tsolmon R, Middleton N et al., 2011. Tracking desertification on the Mongolian steppe through NDVI and field-survey data. International Journal of Digital Earth, 4(1): 50–64. doi: 10.1080/17538940903506006

    Article  Google Scholar 

  • Sweeney M R, Lu H Y, Cui M C et al., 2016. Sand dunes as potential sources of dust in Northern China. Science China Earth Science, 59: 760–769. doi: 10.1007/s11430-015-5246-8

    Article  Google Scholar 

  • CGIAR (Consultative Group for International Agricultural Research). 2016. Drylands and land degradation. Available at: http://drylandsystems.cgiar.org/facts/drylands-land-degradation.

  • UNEP (Untied Nations Environment Programme), 1992. World Atlas of Desertification. London: Edward Arnold.

  • Wang T, Zhu Z D, Wu W, 2002. Sandy desertification in the north of China. Science in China (Series D), 45(Supp.): 23–34. doi: 10.1007/Bf02878385

    Article  Google Scholar 

  • Wang Tao, 2004. Progress in sandy desertification research of China. Journal of Geographical Sciences, 14(4): 387–400.

    Article  Google Scholar 

  • Wang T, Wu W, Xue X et al., 2004. Study of spatial distribution of land desertification in North China in recent 10 years. Science in China (Series D), 47(supp.): 78–88. doi: 10.1360/04zd0009

    Article  Google Scholar 

  • Wang T, 2014. Aeolian desertification and its control in Northern China. International Soil and Water Conservation Research, 2(4): 34–41.

    Article  Google Scholar 

  • Wang X M, 2013. Sandy desertification, Borne on the wind. Chinese Science Bulletin, 58(20): 2395–2403. doi: 10.1007/s11434-013-5771-9

    Article  Google Scholar 

  • Wang X M, Cheng H, Li H et al., 2017a. Key driving forces of desertification in the Mu Us Desert, China. Scientif Report, 7: 3933. doi: 10.1038/S41598-017-04363-8

    Article  Google Scholar 

  • Wang X M, Hua T, Lang L L et al., 2017b. Spatial differences of Aeolian desertification responses to climate in arid Asia, Global and Planetary Change, 148: 22–28. doi: 10.1016/j.gloplacha.2016.11.008

    Article  Google Scholar 

  • Wen Q, Dong Z B, 2016. Geomorphologic patterns of dune network in the Tengger Desert, China. Journal of Arid Land, 8(5): 660–669. doi: 10.1007/s40333-016-0092-x

    Article  Google Scholar 

  • Wen X H, Li B S, Wang W et al., 2006. Deposition of sandstorms in a vegetation-covered sand dune in Ejin Oasis and its characteristics. Journal of Geographical Sciences, 16(4): 502–508.

    Article  Google Scholar 

  • Wijitkosum S, 2016. The impact of land use and spatial changes on desertification risk in degraded areas in Thailand. Sustainable Environment Research, 26: 84–92. doi: 10.1016/j.serj.2015.11.004

    Article  Google Scholar 

  • Xiao J, Shen Y, Tateishi R et al., 2006. Development of topsoil grain size index for monitoring desertification in arid land using remote sensing. International Journal of Remote Sensing, 27(12): 2411–2422. doi: 10.1080/01431160600554363

    Article  Google Scholar 

  • Xu D Y, Kang X W, Qiu D S et al., 2009. Quantitative assessment of desertification using Landsat data on a regional scale-A case study in the Ordos Plateau, China. Sensors, 9: 1738–1753. doi: 10.3390/s90301738

    Article  Google Scholar 

  • Xu X K, Levy J K, Lin Z H et al., 2006. An investigation of sand-dust storm events and land surface characteristics in China using NOAA NDVI data. Global and Planetary Change, 52: 182–196. doi: 10.1016/j.gloplacha.2006.02.009

    Article  Google Scholar 

  • Yao Z Y, Wang T, Han Z W et al., 2007. Migration of sand dunes on the Northern Alxa Plateau, Inner Mongolia, China. Journal of Arid Environments, 70: 80–93. doi: 10.1016/j.jaridenv.2006.12.012

    Article  Google Scholar 

  • Zha Y, Gao J, 1997. Characteristics of desertification and its rehabilitation in China. Journal of Arid Environments, 37: 419–432. doi: 10.1006/jare.1997.029

    Article  Google Scholar 

  • Zhang G L, Dong J W, Xiao X M et al., 2012. Effectiveness of ecological restoration projects in Horqin Sandy Land, China based on SPOT-VGT NDVI data. Ecological Engineering, 38: 20–29. doi: 10.1016/j.ecoleng.2011.09.005

    Article  Google Scholar 

  • Zhang K C, Qu J J, Zu R P et al., 2008. Characteristics of wind-blown sand on Gobi/mobile sand surface. Environ. Geol., 54: 411–416. doi: 10.1007/s00254-007-0827-2

    Google Scholar 

  • Zhang X F, Liao C H, Li J et al., 2013. Fractional vegetation cover estimation in arid and semi-arid environments using HJ-1 satellite hyperspectral data. International Journal of Applied Earth Observation and Geoinformation. 21: 506–512. doi: 10.1016/j.jag.2012.07.003

    Article  Google Scholar 

  • Zhang Zhengcai, Dong Zhibao, Qian Guangqiang et al., 2012. Wind energy environments and aeolian geomorphology in the western and south-western Tengger Desert. Journal of Desert Research, 32(6): 1528–1533. (in Chinese)

    Google Scholar 

  • Zhang Z C, Dong Z B, Wu G X, 2017. Field observations of sand transport over the crest of a transverse dune in northwestern China Tengger Desert. Soil & Tillage Research, 166: 67–75. doi: 10.1016/j.still.2016.10.010

    Article  Google Scholar 

  • Zhang Z Y, Wang N A, Ma N et al., 2014. Lake area changes and the main causes in the hinterland of Badain Jaran Desert during 1973–2010, China. Sciences in Cold and Arid Regions, 6(1): 22–29. doi: 10.3724/SP.J.1226.2014.00022

    Google Scholar 

  • Zhao Jingbo, Zhang Chong, Dong Zhibao et al., 2011. Particle size composition and formation of the mega-dune in the Badain Jaran Desert. Acta Geologica Sinica, 85(8): 1389–1398. (in Chinese)

    Google Scholar 

  • Zhao X, Hu H F, Shen H H et al., 2015. Satellite-indicated long-term vegetation changes and their drivers on the Mongolian Plateau. Landscape Ecol., 30: 1599–1611. doi: 10.1007/s10980-014-0095-y

    Article  Google Scholar 

  • Zhong Decai, 1999. The dynamic changes and trends of modern desert in China. Advance in Earth Sciences, 14(3): 229–234. (in Chinese)

    Google Scholar 

  • Zhu Jinfeng, 2011. Monitoring of desertification on the edge of Badain Jaran Desert in recent 20 years based on remote sensing imagery. Master Thesis, Lanzhou University, Lanzhou, China, May, 2011. (in Chinese)

    Google Scholar 

  • Zhu Jinfeng, Wang Naiang, Chen Hongbao et al., 2010. Study on the boundary and the area of Badain Jardan Desert based on remote sensing imagery. Progress in Geography, 29(9): 1087–1094. (in Chinese)

    Google Scholar 

  • Zhu Zhenda, Wu Zheng, Liu Shu et al., 1980. Deserts in China. Beijing: Science Press. (in Chinese)

    Google Scholar 

  • Zhu Zhenda, Cui Shuhong, 1996. Distribution patterns of desertified land and assessment of its control measures in China. China Environmental Science, 16: 328–334. (in Chinese)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Miss Zhang Yunjie and Miss Guo Yushan for MODIS MCD43A4 data downloading and mosaicking.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsheng Liu.

Additional information

Foundation item: Under the auspices of Innovation Project of LREIS (No. O88RA20CYA, 08R8A010YA), National Natural Science Foundation of China (No. 41671422), International Cooperation in Science and Technology Special Project (No. 2013DFA91700)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Liu, G., Huang, C. et al. Remote Sensing Monitoring of Surface Characteristics in the Badain Jaran, Tengger, and Ulan Buh Deserts of China. Chin. Geogr. Sci. 29, 151–165 (2019). https://doi.org/10.1007/s11769-018-0997-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-018-0997-8

Keywords