Skip to main content
Log in

Extreme Flood Events over the Past 300 Years Inferred from Lake Sedimentary Grain Sizes in the Altay Mountains, Northwestern China

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Understanding the temporal variations of extreme floods that occur in response to climate change is essential to anticipate the trends in flood magnitude and frequency in the context of global warming. However, long-term records of paleofloods in arid regions are scarce, thus preventing a thorough understanding of such events. In this study, a reconstruction of paleofloods over the past 300 years was conducted through an analysis of grain sizes from the sediments of Kanas Lake in the Altay Mountains of northwestern China. Results showed that grain parameters and frequency distributions can be used to infer possible abrupt environmental events within the lake sedimentary sequence, and two extreme flood events corresponding to ca. 1736–1765 AD and ca. 1890 AD were further identified based on canonical discriminant analysis (CDA) and coarse percentile versus median grain size (C-M) pattern analysis, both of which occurred during warmer and wetter climate conditions by referring to tree-ring records. These two flood events are also evidenced by lake sedimentary records in the Altay and Tianshan mountains. Furthermore, through a comparison with other records, the flood event from ca. 1736–1765 AD in the study region seems to have occurred in both the arid central Asia and the Alps in Europe, and thus may have been associated with changes in the North Atlantic Oscillation (NAO) index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aizen V B, Aizen E M, Melack J M et al., 1997. Climate and hydrologic change in the Tien Shan, Central Asia. Journal of Climate, 10(6): 1393–140. doi: 10.1175/1520-0442(1997)010<1393:CAHCIT>2.0.CO;2

    Article  Google Scholar 

  • Amann B, Szidat S, Grosjean M, 2015. A millennial-long record of warm season precipitation and flood frequency for the North-western Alps inferred from varved lake sediments: implications for the future. Quaternary Science Reviews, 115: 89–100. doi: 10.1016/j.quascirev.2015.03.002

    Article  Google Scholar 

  • Appleby P G, Oldfield F, 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena, 5(1): 1–8. doi: 10.1016/S0341-8162(78)80002-2

    Article  Google Scholar 

  • Appleby P G, 2008. Three decades of dating recent sediments by fallout radionuclides: a review. The Holocene, 18(1): 83–93. doi: 10.1177/0959683607085598

    Article  Google Scholar 

  • Arnaud F, Poulenard J, Giguet-Covex C et al., 2016. Erosion under climate and human pressures: an alpine lake sediment perspective. Quaternary Science Reviews, 152: 1–18. doi: 10.1016/j.quascirev.2016.09.018

    Article  Google Scholar 

  • Boomer I, Wünnemann B, Mackay A W et al., 2009. Advances in understanding the late Holocene history of the Aral Sea region. Quaternary International, 194(1): 79–90. doi: 10.1016/j.quaint.2008.03.007

    Article  Google Scholar 

  • Chen F H, Chen J H, Holmes J et al., 2010. Moisture changes over the last millennium in arid central Asia: a review, synthesis and comparison with monsoon region. Quaternary Science Reviews, 29(7–8): 1055–1068. doi: 10.1016/j.quascirev.2010.01.005

    Article  Google Scholar 

  • Chen Jingan, Wan Guoqiang, Zhang D D et al., 2004. Environmental records of lacustrine sediments in different time scales: Sediment grain size as an example. Science in China: Series D: Earth Sciences, 47(10): 954–960. doi: 10.1360/03yd0160

    Article  Google Scholar 

  • Chen J H, Chen F H, Feng S et al., 2015. Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age: spatial patterns and possible mechanisms. Quaternary Science Reviews, 107: 98–111. doi: 10.1016/j.quascirev.2014.10.012

    Article  Google Scholar 

  • Chiba T, Endo K, Sugai T et al., 2016. Reconstruction of Lake Balkhash levels and precipitation/evaporation changes during the last 2000 years from fossil diatom assemblages. Quaternary International, 397: 330–341. doi: 10.1016/j.quaint.2015.08.009

    Article  Google Scholar 

  • Christiansen B, Ljungqvist F C, 2012. The extra-tropical Northern Hemisphere temperature in the last two millennia: reconstructions of low-frequency variability. Climate of the Past, 8(2): 765–786. doi: 10.5194/cp-8-765-2012

    Article  Google Scholar 

  • Corella J P, Benito G, Rodriguez-Lloveras X et al., 2014. Annually-resolved lake record of extreme hydro-meteorological events since AD 1347 in NE Iberian Peninsula. Quaternary Science Reviews, 93: 77–90. doi: 10.1016/j.quascirev.2014.03.020

    Article  Google Scholar 

  • Davi N K, Jacoby G C, Curtis A E et al., 2006. Extension of Drought Records for Central Asia Using Tree Rings: west-central Mongolia. Journal of Climate, 19(2): 288–299. doi: 10.1175/JCLI3621.1

    Article  Google Scholar 

  • Easterling D R, Meehl G A, Parmesan C et al., 2000. Climate extremes: observations, modeling, and impacts. Science, 289(5487): 2068–2074. doi: 10.1126/science.29.5487.2068

    Article  Google Scholar 

  • Feng Min, 1993. Landform and origin of Hanas Lake, Altay Mountains. Journal of Glaciology and Geocryology, 15(4): 559–565. (in Chinese)

    Google Scholar 

  • Garcia-Orellana J, Sanchez-Cabeza JA, Masqué P et al., 2006. Atmospheric fluxes of 210Pb to the western Mediterranean Sea and the Saharan dust influence. Journal of Geophysical Research: Atmospheres, 111(D15): D15305. doi: 10.1029/2005JD006660

    Article  Google Scholar 

  • Glur L, Wirth S B, Büntgen U et al., 2013. Frequent floods in the European Alps coincide with cooler periods of the past 2500 years. Scientific Reports, 3: 2770. doi: 10.1038/srep02770

    Article  Google Scholar 

  • Hu Yicheng, Yuan Yujiang, Wei Weishou et al., 2012. Tree-ring reconstruction of mean June–July temperature during 1613–2006 in east Altay, Xinjiang of China. Journal of Desert Research, 32(4): 1003–1009. (in Chinese)

    Google Scholar 

  • Huang Xiaozhong, Chen Fahu, Xiao Sun et al., 2008. Primary study on the environmental significances of grain-size changes of the Lake Bosten sediments. Journal of Lake Sciences, 20(3): 291–297. doi: 10.18307/2008.0305. (in Chinese)

    Article  Google Scholar 

  • IPCC, 2013. Climate change 2013: the physical science basis. In: Stocker T F et al. (eds). Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

  • Li J B, Gou X H, Cook E R et al., 2006. Tree-ring based drought reconstruction for the central Tien Shan area in northwest China. Geophysical Research Letters, 33(7): L07715. doi: 10.1029/2006GL025803

    Google Scholar 

  • Li Y F, Guo Y, Yu G. 2013. An analysis of extreme flood events during the past 400 years at Taihu lake, China. Journal of Hydrology, 500: 217–225. doi: 10.1016/j.jhydrol.2013.02.028

    Article  Google Scholar 

  • Li Y, Qiang M R, Zhang J W et al., 2016. Hydroclimatic changes over the past 900 years documented by the sediments of Tiewaike Lake, Altai Mountains, northwestern China. Quaternary International, 452: 91–101. doi: 10.1016/j.quaint.2016.07.053

    Article  Google Scholar 

  • Liu C T, Zipser E J, 2015. The global distribution of largest, deepest, and most intense precipitation systems. Geophysical Research Letters, 42(9): 3591–3595. doi: 10.1002/2015GL063776

    Article  Google Scholar 

  • López-Merino L, Leroy S A G, Eshel A et al., 2016. Using palynology to re-assess the Dead Sea laminated sediments: indeed varves? Quaternary Science Reviews, 140: 49–66. doi: 10.1016/j.quascirev.2016.03.024

    Article  Google Scholar 

  • Ma L, Wu J L, Abuduwaili J et al., 2015. Aeolian particle transport inferred using a ~150-year sediment record from Sayram Lake, arid northwest China. Journal of Limnology, 74(3): 584–593. doi: 10.4081/jlimnol.2015.1208

    Google Scholar 

  • Min S K, Zhang X B, Zwiers F W et al., 2011. Human contribution to more-intense precipitation extremes. Nature, 470(7334): 378–381. doi: 10.1038/nature09763

    Article  Google Scholar 

  • Nuerlan Hazaizi, Shen Yongping, 2014. Flood characteristics of Altay area, Xinjiang. Journal of China Hydrology, 34(4): 74–81. (in Chinese)

    Google Scholar 

  • Oldfield F, 2005. Environmental Change: Key Issues and Alternative Approaches. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Pall P, Aina T, Stone D A et al., 2011. Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature, 470(7334): 382–385. doi: 10.1038/nature09762

    Article  Google Scholar 

  • Purkait B, Majumdar D D, 2014. Distinguishing different sedimentary facies in a deltaic system. Sedimentary Geology, 308(7): 53–62. doi: 10.1016/j.sedgeo.2014.05.001

    Article  Google Scholar 

  • Schillereff D N, Chiverrell R C, Macdonald N et al., 2014. Flood stratigraphies in lake sediments: a review. Earth-Science Reviews, 135: 17–37. doi: 10.1016/j.earscirev.2014.03.011

    Article  Google Scholar 

  • Shi Yafeng, Shen Yongping, Li Dongliang et al., 2003. Discussion on the present climate change from warm-dry to warm-wet in northwest china. Quaternary Sciences, 23(2): 152–164. (in Chinese)

    Google Scholar 

  • Shi Y F, Shen Y K, Kang E S et al., 2007. Recent and Future Climate Change in Northwest China. Climatic Change, 80(3–4): 379–393. doi: 10.1007/s10584-006-9121-7

    Article  Google Scholar 

  • Trouet V, Esper J, Graham N E et al., 2009. Persistent positive North Atlantic oscillation mode dominated the medieval climate anomaly. Science, 324(5923): 78–80. doi: 10.1126/science.1166349

    Article  Google Scholar 

  • Wang Hao, Liu Guohua, Li Zongshan et al., 2016. Impacts of Climate Change on Net Primary Productivity in Arid and Semiarid Regions of China. Chinese Geographical Science, 26(1): 35–47. doi: 10.1007/s11769-015-0762-1

    Article  Google Scholar 

  • Wen Kegang, Shi Yuguang, 2006. China Meteorological Disasters Books: Xinjiang Volume. Beijing: China Meteorological Press, 75–146. (in Chinese)

    Google Scholar 

  • Wilhelm B, Arnaud F, Enters D et al., 2012. Does global warming favour the occurrence of extreme floods in European Alps? First evidences from a NW Alps proglacial lake sediment record. Climatic Change, 113(3–4): 563–581. doi: 10.1007/s10584-011-0376-2

    Article  Google Scholar 

  • Wilhelm B, Arnaud F, Sabatier P et al., 2013. Palaeoflood activity and climate change over the last 1400 years recorded by lake sediments in the north-west European Alps. Journal of Quaternary Science, 28(2): 189–199. doi: 10.1002/jqs.2609

    Article  Google Scholar 

  • Wu J L, Liu W, Zeng H A et al., 2014. Water Quantity and Quality of Six Lakes in the Arid Xinjiang Region, NW China. Environmental Processes, 1(2): 115–125. doi: 10.1007/s40710-014-0007-9

    Article  Google Scholar 

  • Xiao J L, Chang Z G, Wen R L et al., 2009. Holocene weak monsoon intervals indicated by low lake levels at Hulun Lake in the monsoonal margin region of northeastern Inner Mongolia, China. The Holocene, 19(6): 899–908. doi: 10.1177/0959683609336574

    Article  Google Scholar 

  • Yin Zhiqiang, Qin Xiaoguang, Wu Jinshui et al., 2008. Multimodal grain-size distribution characteristics and formation mechanism of lake sediments. Quaternary Sciences, 28(2): 345–353. (in Chinese)

    Google Scholar 

  • Zhang M, Chen Y N, Shen Y J et al., 2017. Changes of precipitation extremes in arid Central Asia. Quaternary International, 436: 16–27. doi:10.1016/j.quaint.2016.12.024

    Article  Google Scholar 

  • Zhang Tongwen, Yuan Yujiang, Yu Shulong et al., 2008a. Reconstructed mean temperature series from May to September with tree-ring in the western region of Altay near the recent 365 a. Arid Zone Research, 25(2): 288–294. (in Chinese)

    Article  Google Scholar 

  • Zhang Tongwen, Yuan Yujiang, Yu Shulong et al., 2008b. June to September precipitation series of 1481–2004 reconstructed from tree-ring in the western region of Altay Prefecture, Xinjiang. Journal of Glaciology and Geocryology, 30(4): 659–657. (in Chinese)

    Google Scholar 

  • Zhang Tongwen, Yuan Yujiang, Wei Wenshou et al., 2010. Reconstructed number of snow cover depth ≥0 cm days changes in the western Altai Prefecture, using tree-ring width chronologies. Desert and Oasis Meteorology, 4(3): 6–11. (in Chinese)

    Google Scholar 

  • Zhang Wei, Fu Yanjing, Liu Beibei et al., 2015. Geomorphological process of late Quaternary glaciers in Kanas river valley of the Altay Mountains. Acta Geographic Sinica, 70(5): 739–750. (in Chinese)

    Google Scholar 

Download references

Acknowledgements

We would like to thank MA Long and Kanas Scenic Spot Management Committee for their field assistances.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinglu Wu.

Additional information

Foundation item: Under the auspices of National Key Research and Development Program of China (No. 2017YFA0603400), National Science Foundation of China (No. 41671200, U1603242)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Wu, J. & Zeng, H. Extreme Flood Events over the Past 300 Years Inferred from Lake Sedimentary Grain Sizes in the Altay Mountains, Northwestern China. Chin. Geogr. Sci. 28, 773–783 (2018). https://doi.org/10.1007/s11769-018-0968-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-018-0968-0

Keywords

Navigation