Chinese Geographical Science

, Volume 28, Issue 1, pp 86–99 | Cite as

Trade-offs and Synergies of Ecosystem Services in the Taihu Lake Basin of China

  • Xuning Qiao
  • Yangyang Gu
  • Changxin Zou
  • Lei Wang
  • Juhua Luo
  • Xianfeng Huang


Understanding the spatial interactions among multiple ecosystem services is crucial for ecosystem services management. Ecosystem services, including crop production, freshwater supply, aquatic production, net primary production, soil conservation, water conservation, flood regulation, forest recreation, were measured at 1-km grid scale covering the Taihu Lake Basin (TLB) of China. Our objective is to get a comprehensive understanding of the spatial distributions, trade-offs, synergies of multiple ecosystem services across the TLB. Our results found that: 1) majority of ecosystem services were clustered in space and had a similar spatial distribution pattern with the geographical resource endowment. Most of the landscape contributed a high supply of no services, one or two, and a low supply of three to seven services. 2) There were high correlation between forest recreation and freshwater supply and regulating services. Aquatic production had low correlation with other services. 3) The changes of provisioning services led to trade-offs between regulating services and cultural services in the TLB, while synergies mainly occurred among the provisioning service. 4) The spatial relationships of multiple services are consistent at 1-km spatial scale, counties and provinces. This research could help integrate multiple ecosystem services across scales and serve as a reference for decision making.


ecosystem services spatial pattern Principal Component Analysis trade-offs synergies Taihu Lake Basin (TLB) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. APBS (Anhui Provincial Bureau of Statistics), 2011. Anhui Statistical Yearbook 2011. Beijing, China: China Statistic Press. (in Chinese)Google Scholar
  2. Bateman I J, Harwood A R, Mace G M et al., 2013. Bringing ecosystem services into economic decision-making: land use in the United Kingdom. Science, 341(6141): 45–50. doi: 10. 1126/science.1234379CrossRefGoogle Scholar
  3. Bennett E M, Peterson G D, Gordon L J, 2009. Understanding relationships among multiple ecosystem services. Ecology Letters, 12(12): 1394–1404. doi: 10.1111/j.1461-0248.2009.01387. xCrossRefGoogle Scholar
  4. Brauman K A, Daily G C, Duarte T K et al., 2007. The nature and value of ecosystem services: an overview highlighting hydrologic services. Annual Review of Environment and Resources, 32(1): 67–98. doi: 10.1146/ Scholar
  5. Carpenter S R, Mooney H A, Agard J et al., 2009. Science for managing ecosystem services: beyond the millennium ecosystem assessment. Proceedings of the National Academy of Sciences of the United States of America, 106(5): 1305–1312. doi: 10.1073/pnas.0808772106CrossRefGoogle Scholar
  6. Costanza R, d’Arge R, de Groot R et al., 1997. The value of the world's ecosystem services and natural capital. Nature, 387(6630): 253–260. doi: 10.1038/387253a0CrossRefGoogle Scholar
  7. DeFries R S, Foley J A, Asner G P, 2004. Land-use choices: balancing human needs and ecosystem function. Frontiers in Ecology and the Environment, 2(5): 249–257. doi: 10.1890/1540-9295(2004)002[0249:LCBHNA]2.0.CO;2CrossRefGoogle Scholar
  8. Derissen S, Latacz-Lohmann U, 2013. What are PES? A review of definitions and an extension. Ecosystem Services, 6: 12–15. doi: 10. 1016/j.ecoser.2013.02.002CrossRefGoogle Scholar
  9. Fan Yulong, Hu Nan, Ding Shengyan et al., 2016. Progress in terrestrial ecosystem services and biodiversity. Acta Ecologica Sinica, 36(15): 4583–4593. (in Chinese).Google Scholar
  10. Field C B, Randerson J T, Malmström C M, 1995. Global net primary production: combining ecology and remote sensing. Remote Sensing of Environment, 51(1): 74–88. doi: 10.1016/ 0034-4257(94)00066-VCrossRefGoogle Scholar
  11. Fischer G, Nachtergaele F, Prieler S et al., 2008. Global agro-ecological zones assessment for agriculture (GAEZ 2008). Rome, Italy: IIASA, Laxenburg, Austria and FAO.Google Scholar
  12. Foley J A, De Fries R, Asner G P et al., 2005. Global consequences of land use. Science, 309(5734): 570–574. doi: 10. 1126/science.1111772CrossRefGoogle Scholar
  13. Fu B J, Gulinck H, 1994. Land evaluation in an area of severe erosion: the Loess Plateau of China. Land Degradation and Development, 5(1): 33–40. doi: 10.1002/ldr.3400050105CrossRefGoogle Scholar
  14. Fu B J, Wang S, Su C H et al., 2013. Linking ecosystem processes and ecosystem services. Current Opinion in Environmental Sustainability, 5(1): 4–10. doi: 10.1016/j.cosust.2012.12.002CrossRefGoogle Scholar
  15. Goldstein J H, Caldarone G, Duarte T K et al., 2012. Integrating ecosystem-service tradeoffs into land-use decisions. Proceedings of the National Academy of Sciences of the United States of America, 109(19): 7565–7570. doi: 10.1073/pnas.120104 0109CrossRefGoogle Scholar
  16. Guo L, 2007. Ecology: doing battle with the green monster of Taihu Lake. Science, 317(5842): 1166–1166. doi: 10.1126/ science.317.5842. 1166CrossRefGoogle Scholar
  17. Haase D, Schwarz N, Strohbach M et al., 2012. Synergies, trade-offs, and losses of ecosystem services in urban regions: an integrated multiscale framework applied to the Leipzig-Halle Region, Germany. Ecology and Society, 17(3): 22. doi: 10.5751/es-04853-170322Google Scholar
  18. Jiao Y Y, Chen Q K, Chen X et al., 2014. Occurrence and transfer of a cyanobacterial neurotoxin β-methylamino-L-alanine within the aquatic food webs of Gonghu Bay (Lake Taihu, China) to evaluate the potential human health risk. Science of the Total Environment, 468-469: 457–463. doi: 10.1016/j.scitotenv.2013.08.064CrossRefGoogle Scholar
  19. Jin Yan, Huang Jingfeng, Peng Dailiang, 2009. A new quantitative model of ecological compensation based on ecosystem capital in Zhejiang Province, China. Journal of Zhejiang University Science B, 10(4): 301–305. doi: 10.1631/jzus.B0820222CrossRefGoogle Scholar
  20. JPBS (Jiangsu Provincial Bureau of Statistics), 2011. Jiangsu Statistical Yearbook 2011. Beijing, China: China Statistic Press. (in Chinese)Google Scholar
  21. Legendre P, Legendre L, 1998. Numerical Ecology. 2nd ed. Amsterdam: Elsevier.Google Scholar
  22. Li J, Ren Z Y, Zhou Z X, 2006. Ecosystem services and their values: a case study in the Qinba mountains of China. Ecological Research, 21(4): 597–604. doi: 10.1007/s11284-006-0148-zCrossRefGoogle Scholar
  23. Li J, Zhou Z X, 2016. Natural and human impacts on ecosystem services in Guanzhong-Tianshui economic region of China. Environmental Science and Pollution Research, 23(7): 6803–6815. doi: 10.1007/s11356-015-5867-7Google Scholar
  24. Li Z F, Luo C, Xi Q et al., 2015. Assessment of the AnnAGNPS model in simulating runoff and nutrients in a typical small watershed in the Taihu Lake basin, China. Catena, 133: 349–361. doi: 10.1016/j.catena.2015.06.007CrossRefGoogle Scholar
  25. Liu G L, Zhang L C, Zhang Q et al., 2015. The response of grain production to changes in quantity and quality of cropland in Yangtze River Delta, China. Journal of the Science of Food and Agriculture, 95(3): 480–489. doi: 10.1002/jsfa.6745CrossRefGoogle Scholar
  26. MA (Millennium Ecosystem Assessment), 2005. Ecosystems and Human Well-being: Synthesis. 2nd ed. Washington, DC: Island Press.Google Scholar
  27. Piao S L, Fang J Y, Ciais P et al., 2009. The carbon balance of terrestrial ecosystems in China. Nature, 458(7241): 1009–1013. doi: 10.1038/nature07944CrossRefGoogle Scholar
  28. Plieninger T, Dijks S, Oteros-Rozas E et al., 2013. Assessing, mapping, and quantifying cultural ecosystem services at community level. Land Use Policy, 33: 118–129. doi: 10.1016/j. landusepol.2012.12.013CrossRefGoogle Scholar
  29. Potter C S, Randerson J T, Field C B et al., 1993. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochemical Cycles, 7(4): 811–841. doi: 10.1029/93gb02725CrossRefGoogle Scholar
  30. Qiu J X, Turner M G, 2013. Spatial interactions among ecosystem services in an urbanizing agricultural watershed. Proceedings of the National Academy of Sciences of the United States of America, 110(29): 12149–12154. doi: 10.1073/pnas.1310539 110CrossRefGoogle Scholar
  31. Rangel T F, Diniz-Filho J A F, Bini L M, 2010. SAM: a comprehensive application for Spatial Analysis in Macroecology. Ecography, 33(1): 46–50. doi: 10.1111/j.1600-0587.2009.06299.xCrossRefGoogle Scholar
  32. Rao Enming, Xiao Yi, Ouyang Zhiyun, 2014. Assessment of flood regulation service of lakes and reservoirs in china. Journal of Natural Resources, 29(8): 1356–1365. (in Chinese).Google Scholar
  33. Raudsepp-Hearne C, Peterson G D, Bennett E M, 2010. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proceedings of the National Academy of Sciences of the United States of America, 107(11): 5242–5247. doi: 10. 1073/pnas.0907284107CrossRefGoogle Scholar
  34. Ricketts T H, Daily G C, Ehrlich P R et al., 2004. Economic value of tropical forest to coffee production. Proceedings of the National Academy of Sciences of the United States of America, 101(34): 12579–12582. doi: 10.1073/pnas.0405147101CrossRefGoogle Scholar
  35. Rodríguez J P, Beard Jr T D, Bennett E M et al., 2006. Trade-offs across space, time, and ecosystem services. Ecology and Society, 11(1): 28. doi: 10.5751/ES-01667-110128CrossRefGoogle Scholar
  36. Rounsevell M D A, Annetts J E, Audsley E et al., 2003. Modelling the spatial distribution of agricultural land use at the regional scale. Agriculture, Ecosystems & Environment, 95(2–3): 465–479. doi: 10.1016/S0167-8809(02)00217-7CrossRefGoogle Scholar
  37. Sayer J, Cassman K G, 2013. Agricultural innovation to protect the environment. Proceedings of the National Academy of Sciences of the United States of America, 110(21): 8345–8348. doi: 10.1073/pnas.1208054110CrossRefGoogle Scholar
  38. SBS (Shanghai Bureau of Statistic), 2011. Shanghai Statistical Yearbook 2011. Beijing, China: China Statistic Press. (in Chinese)Google Scholar
  39. State Council of China, 2014. National New-Type Urbanization Plan 2014-2020. Beijing, China: People's Publishing House. (in Chinese)Google Scholar
  40. Su C H, Fu B J, He C S et al., 2012a. Variation of ecosystem services and human activities: a case study in the Yanhe Watershed of China. Acta Oecologica, 44: 46–57. doi: 10.1016/j. actao.2011.11.006CrossRefGoogle Scholar
  41. Su C H, Fu B J, Wei Y P et al., 2012b. Ecosystem management based on ecosystem services and human activities: a case study in the Yanhe watershed. Sustainability Science, 7(1): 17–32. doi: 10.1007/s11625-011-0145-1CrossRefGoogle Scholar
  42. Turner K G, Odgaard M V, Bøcher P K et al., 2014. Bundling ecosystem services in Denmark: trade-offs and synergies in a cultural landscape. Landscape and Urban Planning, 125: 89–104. doi: 10.1016/j.landurbplan.2014.02.007CrossRefGoogle Scholar
  43. USGS, 2004. Shuttle Radar Topography Mission, 1 Arc Second scene SRTM_u03_n008e004, Unfilled Unfinished 2.0, Global Land Cover Facility. College Park, MD: University of Maryland.Google Scholar
  44. Vos W, Meekes H, 1999. Trends in European cultural landscape development: perspectives for a sustainable future. Landscape and Urban Planning, 46(1–3): 3–14. doi: 10.1016/S0169-2046 (99)00043-2CrossRefGoogle Scholar
  45. Wang G X, Zhang L M, Zhuang Q L et al., 2016. Quantification of the soil organic carbon balance in the Tai-Lake paddy soils of China. Soil and Tillage Research, 155: 95–106. doi: 10. 1016/j.still.2015.08.003Google Scholar
  46. Wang Liyan, Xiao Yi, Ouyang Zhiyun et al., 2017. Gross ecosystem product accounting in the national key ecological function area: an example of Arxan. China Population, Resources and Environment, 27(3): 146–154. (in Chinese).Google Scholar
  47. Wen Yuanguang, Liu Shirong, 1995. Quantitative analysis of the characteristics of rainfall interception of main forest ecosystems in China. Scientia Silvae Sinicae, 31(4): 289–298. (in Chinese)Google Scholar
  48. Xu X B, Yang G S, Tan Y et al., 2016. Ecological risk assessment of ecosystem services in the Taihu Lake Basin of China from 1985 to 2020. Science of the Total Environment, 554-555: 7–16. doi: 10.1016/j.scitotenv.2016.02.120CrossRefGoogle Scholar
  49. Yang G F, Ge Y, Xue H et al., 2015. Using ecosystem service bundles to detect trade-offs and synergies across urban-rural complexes. Landscape and Urban Planning, 136: 110–121. doi: 10.1016/j.landurbplan.2014.12.006CrossRefGoogle Scholar
  50. Yin Y X, Xu Y P, Chen Y, 2009. Relationship between flood/drought disasters and ENSO from 1857 to 2003 in the Taihu Lake basin, China. Quaternary International, 208(1–2): 93–101. doi: 10.1016/j.quaint.2008.12.016CrossRefGoogle Scholar
  51. Yu T, Zhang Y, Hu X N et al., 2012. Distribution and bioaccumulation of heavy metals in aquatic organisms of different trophic levels and potential health risk assessment from Taihu lake, China. Ecotoxicology and Environmental Safety, 81: 55–64. doi: 10.1016/j.ecoenv. 2012.04.014CrossRefGoogle Scholar
  52. Zhao M S, Running S W, 2010. Drought-induced reduction in global terrestrial net primary production from 2000 Through 2009. Science, 329(5994): 940–943. doi: 10.1126/science. 1192666CrossRefGoogle Scholar
  53. ZPBS (Zhejiang Provincial Bureau of Statistics), 2011. Zhejiang Statistical Yearbook 2011. Beijing, China: China Statistic Press. (in Chinese)Google Scholar

Copyright information

© Science Press, Northeast Institute of Geography and Agricultural Ecology, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xuning Qiao
    • 1
  • Yangyang Gu
    • 1
    • 2
    • 3
  • Changxin Zou
    • 2
  • Lei Wang
    • 4
  • Juhua Luo
    • 3
  • Xianfeng Huang
    • 5
  1. 1.School of Surveying and Land Information EngineeringHenan Polytechnic UniversityJiaozuoChina
  2. 2.Nanjing Institute of Environmental ScienceMinistry of Environmental ProtectionNanjingChina
  3. 3.Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
  4. 4.Department of Geography & AnthropologyLouisiana State UniversityBaton RougeUSA
  5. 5.Guizhou Institue of Environmental Sciences Research and DesignGuiyangChina

Personalised recommendations