Chinese Geographical Science

, Volume 28, Issue 1, pp 38–46 | Cite as

Spatio-temporal Variation of Arctic Sea Ice in Summer from 2003 to 2013

  • Mengquan Wu
  • Lili Jia
  • Qianguo Xing
  • Xiaodong Song


The variation in Arctic sea ice has significant implications for climate change due to its huge influence on the global heat balance. In this study, we quantified the spatio-temporal variation of Arctic sea ice distribution using Advanced Microwave Scanning Radiometer (AMSR-E) sea-ice concentration data from 2003 to 2013. The results found that, over this period, the extent of sea ice reached a maximum in 2004, whereas in 2007 and 2012, the extent of summer sea ice was at a minimum. It declined continuously from 2010 to 2012, falling to its lowest level since 2003. Sea-ice extent fell continuously each summer between July and mid-September before increasing again. It decreased most rapidly in September, and the summer reduction rate was 1.35 × 105 km2/yr, twice as fast as the rate between1979 and 2006, and slightly slower than from 2002 to 2011. Area with >90% sea-ice concentration decreased by 1.32 × 107 km2/yr, while locations with >50% sea-ice concentration, which were mainly covered by perennial ice, were near the North Pole, the Beaufort Sea, and the Queen Elizabeth Islands. Perennial Arctic ice decreased at a rate of 1.54 × 105 km2 annually over the past 11 years.


sea ice Advanced Microwave Scanning Radiometer (AMSR-E) climate change Arctic summer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arntsen A E, Song A J, Jacqueline A, 2015. Observations of the summer breakup of an Arctic sea ice cover. Geophysical Research Letters, 42(19): 8057–8063. doi: 10.1002/2015GL06 5224CrossRefGoogle Scholar
  2. Cavalieri D J, Parkinson C L, Vinnikov K Y, 2003. 30-year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability. Geophysical Research Letters, 30(18): 1970. doi: 10.1029/2003GL018031CrossRefGoogle Scholar
  3. Cavalieri D J, Parkinson C L, 2012. Arctic sea ice variability and trends, 1979-2010. The Cryosphere, 6(4): 881–889. doi: 10.5194/tc-6-881-2012CrossRefGoogle Scholar
  4. Comiso J C, 2002. A rapidly declining perennial sea ice cover in the Arctic. Geophysical Research Letters, 29(20): 17–1–17–4. doi: 10.1029/2002GL015650CrossRefGoogle Scholar
  5. Comiso J C, Parkinson C L, Gersten R et al., 2008. Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters, 35(1): L01703. doi: 10.1029/2007GL031972CrossRefGoogle Scholar
  6. Day J J, Hargreaves J C, Annan J D et al., 2012. Sources of multi-decadal variability in Arctic sea ice extent. Environmental Research Letters, 7(3): 034011. doi: 10.1088/1748-9326/7/3/034011CrossRefGoogle Scholar
  7. Holland M M, Bitz C M, Tremblay B, 2006. Future abrupt reductions in the summer Arctic sea ice. Geophysical Research Letters, 33(23): L23503. doi: 10.1029/2006GL028024CrossRefGoogle Scholar
  8. Ke Changqing, Peng Haitao, Sun Bo et al., 2013. Spatio-temporal variability of Arctic sea ice from 2002 to 2011. Journal of Remote Sensing, 17(2): 452–466. (in Chinese)Google Scholar
  9. Kern S, 2004. A new method for medium-resolution sea ice analysis using weather-influence corrected Special Sensor Microwave/Imager 85 GHz data. International Journal of Remote Sensing, 25(21): 4555–4582. doi: 10.1080/0143116041000169 8898CrossRefGoogle Scholar
  10. Kwok R, 2007. Near zero replenishment of the Arctic multiyear sea ice cover at the end of 2005 summer. Geophysical Research Letters, 34(5): L05501. doi: 10.1029/2006GL028737Google Scholar
  11. Kwok R, Rothrock D A, 2009. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophysical Research Letters, 36(15): L15501. doi: 10.1029/2009GL0 39035CrossRefGoogle Scholar
  12. Kwok R, Untersteiner N, 2011. The thinning of Arctic sea ice. Physics Today, 64(4): 36. doi: 10.1063/1.3580491CrossRefGoogle Scholar
  13. Lindsay R W, Zhang J, Schweiger A et al., 2009. Arctic sea ice retreat in 2007 follows thinning trend. Journal of Climate, 22(1): 165–176. doi: 10.1175/2008JCLI2521.1CrossRefGoogle Scholar
  14. Liu J P, Curry J A, Hu Y Y, 2004. Recent Arctic sea ice variability: connections to the Arctic Oscillation and the ENSO. Geophysical Research Letter, 31: 09211. doi: 10.1029/2004GL01 9858Google Scholar
  15. Mark C S, Marika M H, Julienne S, 2007. Perspectives on the Arctic’s shrinking sea-ice cover. Science, 315: 1533–1536. doi: 10.1126/science.1139426CrossRefGoogle Scholar
  16. Markus T, Stroeve J C, Miller J, 2009. Recent changes in Arctic sea ice melt onset, freeze up, and melt season length. Journal of Geophysical Research: Oceans, 114(C12): C12024. doi: 10. 1029/2009JC005436CrossRefGoogle Scholar
  17. Meng Shang, Li Ming, Tian Zhongxiang et al., 2013. Characteristics of the sea ice variation in the Arctic Northeast Passage. Marine Forecasts, 30(2): 8–13. (in Chinese)Google Scholar
  18. Parkinson C L, Cavalieri D J, 2008. Arctic sea ice variability and trends, 1979-2006. Journal of Geophysical Research: Oceans, 113(C7). doi: 10.1029/2007JC004558Google Scholar
  19. Rothrock D A, Yu Y, Maykut G A, 1999. Thinning of the Arctic sea-ice cover. Geophysical Research Letters, 26(23): 3469–3472. doi: 10.1029/1999GL010863CrossRefGoogle Scholar
  20. Rothrock D A, Zhang J, 2005. Arctic Ocean sea ice volume: what explains its recent depletion? Journal of Geophysical Research: Oceans, 110(C1): C01002. doi: 10.1029/2004JC00 2282Google Scholar
  21. Rothrock D A, Percival D B, Wensnahan M, 2008. The decline in arctic sea-ice thickness: separating the spatial, annual, and interannual variability in a quarter century of submarine data. Journal of Geophysical Research: Oceans, 113(C5): C05003. doi: 10.1029/2007JC004252Google Scholar
  22. Serreze M C, Holland M M, Stroeve J, 2007. Perspectives on the Arctic’s shrinking sea-ice cover. Science, 315(5818): 1533–1536. doi: 10.1126/science.1139426CrossRefGoogle Scholar
  23. Shi L, Lu P, Cheng B et al., 2015. An assessment of Arctic sea ice concentration retrieval based on ‘HY-2’ scanning radiometer data using field observations during CHINARE-2012 and other satellite instruments. Acta Oceanologica Sinica, 34(3): 42–50. doi: 10.1007/s13131-015-0632-9CrossRefGoogle Scholar
  24. Shibata H, Izumiyama K, Tateyama K et al., 2013. Sea-ice coverage variability on the Northern Sea Routes, 1980–2011. Annals of Glaciology, 54(62): 139–148. doi: 10.3189/2013AoG 62A123CrossRefGoogle Scholar
  25. Smith D M, 1998. Observation of perennial Arctic sea ice melt and freeze-up using passive microwave data. Journal of Geophysical Research: Oceans, 103(C12): 27753–27769. doi: 10.1029/98JC02416CrossRefGoogle Scholar
  26. Snape T J, Forster P M, 2014. Decline of Arctic sea ice: evaluation and weighting of CMIP5 projections. Journal of Geophysical Research: Atmospheres, 119(2): 546–554. doi: 10. 1002/2013JD020593Google Scholar
  27. Spreen G, Kaleschke L, Heygster G, 2008. Sea ice remote sensing using AMSR-E 89-GHz channels. Journal of Geophysical Research, 113(C2): C02S03. doi: 10.1029/2005JC003384Google Scholar
  28. Stroeve J, Holland M M, Meier W et al., 2007. Arctic sea ice decline: faster than forecast. Geophysical Research Letters, 34(9): L09501. doi: 10.1029/2007GL029703Google Scholar
  29. Stirling I, Parkinson C L, 2006. Possible effects of climate warming on selected populations of Polar Bears (Ursus maritimus) in the Canadian Arctic. Arctic, 59(3): 261–275.Google Scholar
  30. Sui Cuijuan, Zhang Zhanhai, Ling Tiejun et al., 2011. Status of arctic sea ice and atmospheric circulation in summer 2010. Chinese Journal of Polar Research, 23(3): 205–216. (in Chinese)Google Scholar
  31. Svendsen E, Kloster K, Farrelly B et al., 1983. Norwegian remote sensing experiment: evaluation of the Nimbus 7 Scanning Multichannel Microwave Radiometer for sea ice research. Journal of Geophysical Research Atmospheres, 88(C5): 2781–2791. doi: 10.1029/JC088iC05p02781CrossRefGoogle Scholar
  32. Svendsen E, Matzler C, Grenfell T C, 1987. A model for retrieving total sea ice concentration from a spaceborne dualpolarized passive microwave instrument operating near 90 GHz. International Journal of Remote Sensing, 8(10): 1479–1487. doi: 10.1080/01431168708954790CrossRefGoogle Scholar
  33. Tan W X, LeDrew E, 2016. Monitoring Arctic sea ice phenology change using hypertemporal remotely sensed data: 1989-2010. Theoretical and Applied Climatology, 125(1–2): 353–363. doi: 10.1007/s00704-015-1507-xCrossRefGoogle Scholar
  34. Wadhams P, Davis N R, 2000. Further evidence of ice thinning in the Arctic Ocean. Geophysical Research Letters, 27(24): 3973–3975. doi: 10.1029/2000GL011802CrossRefGoogle Scholar
  35. Walsh J E, Fetterer F, Scott S J et al., 2017. A database for depicting Arctic sea ice variations back to 1850. Geographical Review, 107(1): 89–107. doi: 10.1111/j.1931-0846.2016.12195.xCrossRefGoogle Scholar
  36. Wang L, Yuan X J, Ting M F et al., 2016. Predicting summer arctic sea ice concentration intraseasonal Variability using a vector autoregressive model. Journal of Climate, 29(4): 1529–1543. doi: 10.1175/JCLI-D-15-0313.1CrossRefGoogle Scholar
  37. Zhang Lu, Zhang Zhanhai, Li Qun et al., 2010. Status of the recent declining of arctic sea ice studies. Chinese Journal of Polar Science, 21(1): 71–80. doi: 10.3724/SP.J.1085.2010.00071Google Scholar
  38. Zhang J L, Lindsay R, Steele M et al., 2008. What drove the dramatic retreat of arctic sea ice during summer 2007? Geophysical Research Letters, 35(11): L11505. doi: 10.1029/2008GL034005Google Scholar

Copyright information

© Science Press, Northeast Institute of Geography and Agricultural Ecology, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mengquan Wu
    • 1
  • Lili Jia
    • 1
  • Qianguo Xing
    • 2
  • Xiaodong Song
    • 3
  1. 1.College of Resources and Environmental EngineeringLudong UniversityYantaiChina
  2. 2.Yantai Institute of Coastal Zone ResearchYantaiChina
  3. 3.College of Geomatics & Municipal EngineeringZhejiang University of Water Resources and Electric PowerHangzhouChina

Personalised recommendations