Skip to main content
Log in

Effects of vegetation type on surface elevation change in Liaohe River Delta wetlands facing accelerated sea level rise

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Rising sea levels threaten the sustainability of coastal wetlands around the globe. The ability of coastal marshes to maintain their position in the intertidal zone depends on the accumulation of both organic and inorganic materials, and vegetation is important in these processes. To study the effects of vegetation type on surface elevation change, we measured surface accretion and elevation change from 2011 to 2016 using rod surface elevation table and feldspar marker horizon method (RSET-MH) in two Phragmites and two Suaeda marshes in the Liaohe River Delta. The Phragmites marshes exhibited higher rates of surface accretion and elevation change than the Suaeda marshes. The two Phragmites marsh sites had average surface elevation change rates at 8.78 mm/yr and 9.26 mm/yr and surface accretion rates at 17.56 mm/yr and 17.88 mm/yr, respectively. At the same time, the two Suaeda marsh sites had average surface elevation change rates at 5.77 mm/yr and 5.91 mm/yr and surface accretion rates at 13.42 mm/yr and 14.38 mm/yr, respectively. The elevation change rates in both the Phragmites marshes and the Suaeda marshes in the Liaohe River Delta could keep pace and even continue to gain elevation relative to averaged sea level rise in the Bohai Sea reported by the 2016 State Oceanic Administration, People’s Republic of China projection (2.4–5.5 mm/yr) in current situations. Our data suggest that vegetation is important in the accretionary processes and vegetation type could regulate the wetland surface elevation. However, the vulnerability of coastal wetlands in the Liaohe River Delta need further assessment considering the accelerated sea level rise, the high rate of subsidence, and the declining sediment delivery, especially for the Suaeda marshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baumann R H, Day J W, Miller C A et al., 1984. Mississippi deltaic wetland survival: Sedimentation versus coastal submergence. Science, 224(4653): 1093–1095. doi: 10.1126/science.224.4653.1093

    Article  Google Scholar 

  • Baustian J J, Mendelssohn I A, Hester M W, 2012. Vegetation’s importance in regulating surface elevation in a coastal salt marsh facing elevated rates of sea level rise. Global Change Biology, 18(11): 3377–3382. doi: 10.1111/j.1365-2486.2012.02792.x

    Article  Google Scholar 

  • Brix H, Ye S Y, Laws E A et al., 2014. Large-scale management of common reed, Phragmites australis, for paper production: A case study from the Liaohe Delta, China. Ecological Engineering, 73: 760–769. doi: 10.1016/j.ecoleng.2014.09.099

    Article  Google Scholar 

  • Cahoon D R, Lynch J C, Knaus R M, 1996. Improved cryogenic coring device for sampling wetland soils. Journal of Sediment Research, 66(5): 1025–1027. doi: 10.2110/jsr.66.1025

    Article  Google Scholar 

  • Cahoon D R, Lynch J C, Perez B C et al., 2002. High-precision measurements of wetland sediment elevation: II. The rod surface elevation table. Journal of Sediment Research, 72(5): 734–739. doi: 10.1306/020702720734

    Google Scholar 

  • Cahoon D R, Lynch J C, Hensel P F, 2006. Monitoring salt marsh elevation: a protocol for the long-term coastal ecosystem monitoring program at Cape Cod national seashore. Final protocol to the long-term coastal ecosystem monitoring program, 104. Wellfleet: Cape Cod National Seashore.

  • Cahoon D R, 2015. Estimating relative sea-level rise and submergence potential at a coastal wetland. Estuaries and Coasts, 38(3): 1077–1084. doi: 10.1007/s12237-014-9872-8

    Article  Google Scholar 

  • Callaway J C, Cahoon D R, Lynch J C, 2013. The Surface Elevation Table–marker horizon method for measuring wetland accretion and elevation dynamics. In: DeLaune RD et al. (eds.). Methods in Biogeochemistry of Wetlands, SSSA Book Series 10. Madison, WI: Soil Science Society of America. 901–917

    Google Scholar 

  • Cherry J A, McKee K L, Grace J B, 2009. Elevated CO2 enhances biological contributions to elevation change in coastal wetlands by offsetting stressors associated with sea-level rise. Journal of Ecology, 97(1): 67–77. doi: 10.1111/j.1365-2745.2008.01449.x

    Article  Google Scholar 

  • Dokka R K, 2006. Modern-day tectonic subsidence in coastal Louisiana. Geology, 34(4): 281–284. doi: 10.1130/G22264.1

    Article  Google Scholar 

  • Gao F L, Wang H D, Guo H Y et al., 2015. Competition between seedlings of Suaeda salsa and Phragmites australis. Wetland Science, 13(5): 582–586. (in Chinese)

    Google Scholar 

  • Graham S A, Mendelssohn I A, 2014. Coastal wetland stability maintained through counterbalancing accretionary responses to chronic nutrient enrichment. Ecology, 95(12): 3271–3283

    Article  Google Scholar 

  • Hatton R S, DeLaune R D, Patrick W H, 1983. Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana. Limnology and Oceanography, 28(3): 494–502. doi: 10.4319/lo.1983.28.3.0494

    Article  Google Scholar 

  • Hensel P E, Day J W, Pont D, 1999. Wetland vertical accretion and soil elevation change in the Rhône River Delta, France: the importance of riverine flooding. Journal of Coastal Research, 15(3): 668–681

    Google Scholar 

  • Hester M W, Mendelssohn I A, Alber M et al., 2009. Climate-Linked alteration of ecosystem services in tidal salt marshes of Georgia and Louisiana. Final Report. US EPA STAR.

    Google Scholar 

  • Ibáñez C, Sharpe P J, Day J W et al., 2010. Vertical accretion and relative sea level rise in the Ebro Delta Wetlands (Catalonia, Spain). Wetlands, 30(5): 979–988. doi: 10.1007/s13157-010-0092-0

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change), 2014. Climate Change 2014: synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC.

    Book  Google Scholar 

  • Jia M, Wang Z M, Liu D W et al., 2015. Monitoring loss and recovery of salt marshes in the Liao River Delta, China. Journal of Coastal Research, 31(2): 371–377

    Article  Google Scholar 

  • Kirwan M L, Murray A B, Boyd W S, 2008. Temporary vegetation disturbance as an explanation for permanent loss of tidal wetlands. Geophysical Research Letters, 35(5). doi: 10.1029/2007GL032681

    Google Scholar 

  • Krauss K W, McKee K L, Lovelock C E et al., 2014. How mangrove forests adjust to rising sea level. New Phytologist, 202: 19–34. doi: 10.1111/nph.12605

    Article  Google Scholar 

  • Lane R R, Day J W, Day J N, 2006. Wetland surface elevation, vertical accretion, and subsidence at three Louisiana estuaries receiving diverted Mississippi River water. Wetlands, 26(4): 1130–1142. doi:10.1672/0277-5212(2006)26[1130:WSEVAA] 2.0.CO;2

    Article  Google Scholar 

  • Langley J A, Mckee K L, Cahoon D R et al., 2009. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proceedings of the National Academy of Sciences of the United States of America, 106(15): 6182–6186. doi: 10.1073/pnas.0807695106

    Article  Google Scholar 

  • Leonard L A, Croft A L, 2006. The effect of standing biomass on flow velocity and turbulence in Spartina alterniflora canopies. Estuarine, Coastal and Shelf Science, 69(3–4): 325–336. doi: 10.1016/j.ecss.2006.05.004

    Article  Google Scholar 

  • Li H, Yang S L, 2009. Trapping effect of tidal marsh vegetation on suspended sediment, Yangtze Delta. Journal of Coastal Research, 25(4): 915–924

    Article  Google Scholar 

  • Li X, Chen L, Shi J, 2012. Developing wetland restoration scenarios and modeling its ecological consequences in the Liaohe River Delta wetlands, China. Clean-Soil Air Water, 40(10): 1185–1196. doi: 10.1002/clen.201200025

    Article  Google Scholar 

  • Liu Yuefeng, Wu Lun, Han Mukang et al., 1998. Assessment of trend and impacts of sea level rise in the Liaohe River Delta. Acta Oceanologica Sinica, 20(2): 73–82. (in Chinese)

    Google Scholar 

  • Loveloc C E, Cahoon D R, Friess D A et al., 2015. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature, 526(7574): 559–563. doi: 10.1038/nature15538.

    Article  Google Scholar 

  • Morris J T, Sundareshwa P V, Nietch C T et al., 2002. Responses of coastal wetlands to rising sea level. Ecology, 83(10): 2869–2877. doi: 10.1890/0012-9658(2002)083[2869:ROCWTR] 2.0.CO;2

    Article  Google Scholar 

  • Morris J T, 2007. Ecological engineering in intertidal salt marshes. Springer Netherlands, 192(1): 161–168. doi: 10.1007/978-1-4020-6008-3_14

    Google Scholar 

  • Nicholls R J, 2004. Coastal flooding and wetland loss in the 21st century: Changes under the SRES climate and socio-economic scenarios. Global Environmental Change, 14(1): 69–86. doi: 10.1016/j.gloenvcha.2003.10.007

    Article  Google Scholar 

  • Nyman J A, Delaune R D, Roberts H et al., 1993. Relationship between vegetation and soil formation in a rapidly submerging coastal marsh. Marine Ecology Progress, 96(3): 269–279. doi: 10.3354/meps096269

    Article  Google Scholar 

  • Nyman J A, Walters J, Delaune R D et al., 2006. Marsh vertical accretion via vegetative growth. Estuarine, Coastal and Shelf Science, 69(3-4), 370–380. doi:10.1016/j.ecss.2006.05.041

    Article  Google Scholar 

  • Pfeffer W T, Harper J T, O’Neel S, 2008. Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science, 321(5894): 1340–1343. doi: 10.1126/science.1159099

    Article  Google Scholar 

  • Rahmstorf S, 2007. A semi-empirical approach to projecting future sea-level rise. Science, 315(5810): 368–370. doi: 10.1126/science.1135456

    Article  Google Scholar 

  • Rogers K, Saintilan N, Heijnis H, 2005. Mangrove encroachment of salt marsh in Western Port Bay, Victoria: the role of sedimentation, subsidence, and sea level rise. Estuaries, 28(4): 551–559. doi: 10.1007/BF02696066

    Article  Google Scholar 

  • Rogers K, Wilton, K M, Saintilan N, 2006. Vegetation change and surface elevation dynamics in estuarine wetlands of southeast Australia. Estuarine, Coastal and Shelf Science, 66(3): 559–569. doi: 10.1016/j.ecss.2005.11.004

    Article  Google Scholar 

  • SAS, 2011. SAS version 9.3. Cary, North Carolina, USA: SAS Institute.

    Google Scholar 

  • State Oceanic Administration, People’s Republic of China, 2016. Bulletin of Sea Level on China’s Coast 2015. http://www. soa.gov.cn/zwgk/hygb/zghpmgb/. 2016-06-18. (in Chinese)

    Google Scholar 

  • Sun Z G, Mou X J, Su W L, 2016. Potential effects of tidal flat variations on decomposition and nutrient dynamics of Phragmites australis, Suaeda salsa and Suaeda glauca litter in newly created marshes of the Yellow River estuary, China. Ecological Engineering, 93: 175–186. doi: 10.1016/j.ecoleng. 2016.05.024

    Article  Google Scholar 

  • Törnqvis T E, Wallace D J, Storms J E A et al., 2008. Mississippi Delta subsidence primarily caused by compaction of Holocene strata. Nature Geoscience, 1(3): 173–176. doi: 10.1038/ngeo 129

    Article  Google Scholar 

  • Wang G D, Wang M, Lu X G et al., 2016. Surface elevation change and susceptibility of coastal wetlands to sea level rise in Liaohe Delta, China. Estuarine, Coastal and Shelf Science, 180: 204–211. doi:10.1016/j.ecss.2016.07.011

    Article  Google Scholar 

  • Webb E L, Friess D A, Krauss K W et al., 2013. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nature Climate Change, 3(5): 458–465. doi: 10.1038/nclimate1756

    Article  Google Scholar 

  • Xiao Duning, Han Mukang, Li Xiaowen et al., 2003. Sea level rising around Bohai Sea and deltaic wetlands protection. Quaternary Sciences, 23(3): 237–246. (in Chinese)

    Google Scholar 

  • Yang S L, 1999. Sedimentation on a growing intertidal island in the Yangtze River mouth. Estuarine, Coastal and Shelf Science, 49(3): 401–410. doi: 10.1006/ecss.1999.0501

    Article  Google Scholar 

Download references

Acknowledgements

We thank Beth Middleton and Evelyn Anemaet (U.S. Geological Survey, Wetland and Aquatic Research Center), QIAO Fenghai (Shuangtai Estuary National Nature Reserve, China) and Fang Yulong (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences) for assistance with logistics, installation, and/or measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Jiang.

Additional information

Foundation item: Under the auspices of National Key Research and Development Program of China (No. 2016YFA0602303), National Natural Science Foundation of China (No. 41501105, 41620104005), Open Fund of the State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration in Northeast Normal University (No. 130028627)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Wang, M., Jiang, M. et al. Effects of vegetation type on surface elevation change in Liaohe River Delta wetlands facing accelerated sea level rise. Chin. Geogr. Sci. 27, 810–817 (2017). https://doi.org/10.1007/s11769-017-0909-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-017-0909-3

Keywords

Navigation