Chinese Geographical Science

, Volume 28, Issue 1, pp 12–24 | Cite as

Spatio-temporal Variation of Soil Respiration and Its Driving Factors in Semi-arid Regions of North China

  • Xinhua Zeng
  • Yigang Song
  • Wanjun Zhang
  • Shengbing He


Soil respiration (SR) is the second-largest flux in ecosystem carbon cycling. Due to the large spatio-temporal variability of environmental factors, SR varied among different vegetation types, thereby impeding accurate estimation of CO2 emissions via SR. However, studies on spatio-temporal variation of SR are still scarce for semi-arid regions of North China. In this study, we conducted 12-month SR measurements in six land-use types, including two secondary forests (Populus tomentosa (PT) and Robinia pseudoacacia (RP)), three artificial plantations (Armeniaca sibirica (AS), Punica granatum (PG) and Ziziphus jujuba (ZJ)) and one natural grassland (GR), to quantify spatio-temporal variation of SR and distinguish its controlling factors. Results indicated that SR exhibited distinct seasonal patterns for the six sites. Soil respiration peaked in August 2012 and bottomed in April 2013. The temporal coefficient of variation (CV) of SR for the six sites ranged from 76.98% to 94.08%, while the spatial CV of SR ranged from 20.28% to 72.97% across the 12-month measurement. Soil temperature and soil moisture were the major controlling factors of temporal variation of SR in the six sites, while spatial variation in SR was mainly caused by the differences in soil total nitrogen (STN), soil organic carbon (SOC), net photosynthesis rate, and fine root biomass. Our results show that the annual average SR and Q10 (temperature sensitivity of soil respiration) values tended to decrease from secondary forests and grassland to plantations, indicating that the conversion of natural ecosystems to man-made ecosystems may reduce CO2 emissions and SR temperature sensitivity. Due to the high spatio-temporal variation of SR in our study area, care should be taken when converting secondary forests and grassland to plantations from the point view of accurately quantifying CO2 emissions via SR at regional scales.


soil respiration spatio-temporal variation substrate availability temperature sensitivity global carbon cycle North China 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bahn M, Rodeghiero M, Anderson-Dunn M et al., 2008. Soil respiration in European grasslands in relation to climate and assimilate supply. Ecosystems, 11(8): 1352–1367. doi: 10. 1007/s10021-008-9198-0CrossRefGoogle Scholar
  2. Bahn M, Schmitt M, Siegwolf R et al., 2009. Does photosynthesis affect grassland soil-respired CO2 and its carbon isotope composition on a diurnal timescale? New Phytologist, 182(2): 451–460. doi: 10.1111/j.1469-8137.2008.02755.xCrossRefGoogle Scholar
  3. Batjes N H, 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47(2): 151–163. doi: 10.1111/j.1365-2389.1996.tb01386.xCrossRefGoogle Scholar
  4. Bellamy P H, Loveland P J, Bradley R I et al., 2005. Carbon losses from all soils across England and Wales 1978–2003. Nature, 437(7056): 245–248. doi: 10.1038/nature04038CrossRefGoogle Scholar
  5. Bremner J M, Mulvaney C S, 1982. Nitrogen-total. In: Page A L et al. (eds.). Methods of Soil Analysis, part 2, Chemical and Microbial Properties. Agronomy Society of America, Agronomy Monograph 9, Wisconsin, pp. 595–624.Google Scholar
  6. Chen Q S, Wang Q B, Han X G et al., 2010. Temporal and spatial variability and controls of soil respiration in a temperate steppe in northern China. Global Biogeochemical Cycles, 24(2): GB2010. doi: 10.1029/2009GB003538Google Scholar
  7. Davidson E A, Belk E, Boone R D, 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4(2): 217–227. doi: 10.1046/j.1365-2486. 1998.00128.xCrossRefGoogle Scholar
  8. Davidson E A, Janssens I A, Luo Y Q, 2006. On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biology, 12(2): 154–164. doi: 10.1111/j.1365-2486.2005.01065.xCrossRefGoogle Scholar
  9. Don A, Schumacher J, Freibauer A, 2011. Impact of tropical land-use change on soil organic carbon stocks: a meta-analysis. Global Change Biology, 17(4): 1658–1670. doi: 10.1111/j. 1365-2486.2010.02336.xCrossRefGoogle Scholar
  10. Drake J E, Oishi A C, Giasson M A et al., 2012. Trenching reduces soil heterotrophic activity in a loblolly pine (Pinus taeda) forest exposed to elevated atmospheric [CO2] and N fertilization. Agricultural and Forest Meteorology, 165(11): 43–52. doi: 10.1016/j.agrformet.2012.05.017CrossRefGoogle Scholar
  11. Fang C M, Smith P, Moncrieff J B et al., 2005. Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 433(7021): 57–59. doi: 10.1038/nature 03138CrossRefGoogle Scholar
  12. Han S M, Yang Y H, Fan T et al., 2012. Precipitation-runoff processes in Shimen hillslope micro-catchment of Taihang Mountain, north China. Hydrological Processes, 26(9): 1332–1341. doi: 10.1002/hyp.8233CrossRefGoogle Scholar
  13. Hogberg P, Nordgren A, Buchmann N et al., 2001. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature, 411(6839): 789–792. doi: 10.1038/35081058CrossRefGoogle Scholar
  14. Janssens I A, Pilegaard K, 2003. Large seasonal changes in Q10 of soil respiration in a beech forest. Global Change Biology, 9(6): 911–918. doi: 10.1046/j.1365-2486.2003.00636.xCrossRefGoogle Scholar
  15. Lai L M, Zhao X C, Jiang L H et al., 2012. Soil respiration in different agricultural and natural ecosystems in an arid region. PLoS ONE, 7(10): e48011. doi: 10.1371/journal.pone.0048011Google Scholar
  16. Lavigne M B, Boutin R, Foster R J et al., 2003. Soil respiration responses to temperature are controlled more by roots than by decomposition in balsam fir ecosystems. Canadian Journal of Forest Research, 33(9): 1744–1753. doi: 10.1139/x03-090CrossRefGoogle Scholar
  17. Li J Y, Xu Q H, Gaillard-Lemdahl M J et al., 2013. Modern pollen and land-use relationships in the Taihang mountains, Hebei province, northern China: a first step towards quantitative reconstruction of human-induced land cover changes. Vegetation History and Archaeobotany, 22(6): 463–477. doi: 10.1007/s 00334-013-0391-5CrossRefGoogle Scholar
  18. Liu J, Jiang P K, Wang H L et al., 2011. Seasonal soil CO2 efflux dynamics after land use change from a natural forest to Moso bamboo plantations in subtropical China. Forest Ecology and Management, 262(6): 1131–1137. doi: 10.1016/j.foreco.2011.06.015CrossRefGoogle Scholar
  19. Lu Rukun, 1999. Analytical Methods for Soil Agrochemistry. Chinese Agricultural Science and Technology Publishing House, Beijing. (in Chinese)Google Scholar
  20. Luan J W, Liu S R, Wang J X et al., 2011. Rhizospheric and heterotrophic respiration of a warm-temperate oak chronosequence in China. Soil Biology and Biochemistry, 43(3): 503–512. doi: 10.1016/j.soilbio.2010.11.010CrossRefGoogle Scholar
  21. Luo J, Chen Y C, Wu Y H et al., 2012. Temporal-spatial variation and controls of soil respiration in different primary succession stages on glacier forehead in Gongga Mountain, China. PLoS ONE, 7(8): e42354. doi: 10.1371/journal.pone.0042354Google Scholar
  22. Luo Y Q, Zhou X H, 2006. Soil Respiration and the Environment. Academic/Elsevier, San Diego, USA.Google Scholar
  23. Mahecha M D, Reichstein M, Carvalhais N et al., 2010. Global convergence in the temperature sensitivity of respiration at ecosystem level. Science, 329(5993): 838–840. doi: 10.1126/science.1189587CrossRefGoogle Scholar
  24. Maier M, Schack-Kirchner H, Hildebrand E E et al., 2011. Soil CO2 efflux vs. soil respiration: implications for flux models. Agricultural and Forest Meteorology, 151(12): 1723–1730. doi: 10.1016/j.agrformet.2011.07.006CrossRefGoogle Scholar
  25. Martin J G, Bolstad P V, 2009. Variation of soil respiration at three spatial scales: components within measurements, intra-site variation and patterns on the landscape. Soil Biology and Biochemistry, 41(3): 530–543. doi: 10.1016/j.soilbio. 2008.12.012CrossRefGoogle Scholar
  26. Monson R K, Lipson D L, Burns S P et al., 2006. Winter forest soil respiration controlled by climate and microbial community composition. Nature, 439(7077): 711–714. doi: 10.1038/nature 04555CrossRefGoogle Scholar
  27. Oishi A C, Palmroth S, Butnor J R et al., 2013. Spatial and temporal variability of soil CO2 efflux in three proximate temperate forest ecosystems. Agricultural and Forest Meteorology, 171–172(4): 256–269. doi: 10.1016/j.agrformet.2012.12.007CrossRefGoogle Scholar
  28. Peng S S, Piao S L, Wang T et al., 2009. Temperature sensitivity of soil respiration in different ecosystems in China. Soil Biology and Biochemistry, 41(5): 1008–1014. doi: 10.1016/j. soilbio. 2008.10.023CrossRefGoogle Scholar
  29. Peng Y Y, Thomas S C, Tian D L, 2008. Forest management and soil respiration: implications for carbon sequestration. Environmental Reviews, 16(NA): 93–111. doi: 10.1139/A08-003CrossRefGoogle Scholar
  30. Piao S L, Fang J Y, Ciais P et al., 2009a. The carbon balance of terrestrial ecosystems in China. Nature, 458(7241): 1009–1013. doi: 10.1038/nature07944CrossRefGoogle Scholar
  31. Piao S L, Ciais P, Friedlingstein P et al., 2009b. Spatiotemporal patterns of terrestrial carbon cycle during the 20th century. Global Biogeochemical Cycles, 23(4): GB4026. doi: 10.1029/2008GB003339CrossRefGoogle Scholar
  32. Pregitzer K S, Laskowski M J, Burton A J et al., 1998. Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiology, 18(10): 665–670. doi: 10.1093/ treephys/18.10.665CrossRefGoogle Scholar
  33. Reichstein M, Falge E, Baldocchi D et al., 2005a. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11(9): 1424–1439. doi: 10.1111/j.1365-2486. 2005.001002.xCrossRefGoogle Scholar
  34. Reichstein M, Subke J A, Angeli A C et al., 2005b. Does the temperature sensitivity of decomposition of soil organic matter depend upon water content, soil horizon, or incubation time? Global Change Biology, 11(10): 1754–1767. doi: 10.1111/j. 1365-2486.2005.001010.xCrossRefGoogle Scholar
  35. Ryan M G, Law B E, 2005. Interpreting, measuring, and modeling soil respiration. Biogeochemistry, 73(1): 3–27. doi: 10.1007/s 10533-004-5167-7CrossRefGoogle Scholar
  36. Saiz G, Green C, Butterbach-Bahl K et al., 2006. Seasonal and spatial variability of soil respiration in four Sitka spruce stands. Plant and Soil, 287(1): 161–176. doi: 10.1007/s11104-006-9052-0CrossRefGoogle Scholar
  37. Sayer E J, Powers J S, Tanner E V J, 2007. Increased litterfall in tropical forests boosts the transfer of soil CO2 to the atmosphere. PLoS ONE, 2(12): e1299. doi: 10.1371/journal.pone. 0001299Google Scholar
  38. Schindlbacher A, Zechmeister-Boltenstern S, Jandl R, 2009. Carbon losses due to soil warming: do autotrophic and heterotrophic soil respiration respond equally? Global Change Biology, 15(4): 901–913. doi: 10.1111/j.1365-2486.2008.01757.xCrossRefGoogle Scholar
  39. Shen H T, Cao J S, Zhang W J et al., 2014. Winter soil CO2 flux from different mid-latitude sites from middle Taihang Mountain in north China. PLoS ONE, 9(3): e91589. doi: 10.1371/journal.pone.0091589Google Scholar
  40. Sheng H, Yang Y S, Yang Z J et al., 2010. The dynamic response of soil respiration to land-use changes in subtropical China. Global Change Biology, 16(3): 1107–1121. doi: 10.1111/j.1365-2486.2009.01988.xCrossRefGoogle Scholar
  41. Shi Z, Li Y Q, Wang S J et al., 2009. Accelerated soil CO2 efflux after conversion from secondary oak forest to pine plantation in southeastern China. Ecological Research, 24(6): 1257–1265. doi: 10.1007/s11284-009-0609-2CrossRefGoogle Scholar
  42. Smith D L, Johnson L, 2004. Vegetation-mediated changes in microclimate reduce soil respiration as woodlands expand into grasslands. Ecology, 85(12): 3348–3361. doi: 10.1890/03-0576CrossRefGoogle Scholar
  43. Soil Survey Staff, 1999. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. Agriculture Handbook No. 436. United States Department of Agriculture (USDA), Natural Resources Conservation Service, Washington, USA.Google Scholar
  44. Song X Z, Yuan H Y, Kimberley M O et al., 2013. Soil CO2 flux dynamics in the two main plantation forest types in subtropical China. Science and Total Environment, 444(3): 363–368. doi: 10.1016/j.scitotenv.2012.12.006CrossRefGoogle Scholar
  45. State Soil Survey Service of China, 1998. China Soil. Beijing: China Agricultural Press. (in Chinese).Google Scholar
  46. Tang J W, Baldocchi D D, Xu L K, 2005. Tree photosynthesis modulates soil respiration on a diurnal time scale. Global Change Biology, 11(8): 1298–1304. doi: 10.1111/j.1365-2486. 2005.00978.xCrossRefGoogle Scholar
  47. Tang X L, Liu S G, Zhou G Y et al., 2006. Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China. Global Change Biology, 12(3): 546–560. doi: 10.1111/j.1365-2486.2006.01109.xCrossRefGoogle Scholar
  48. Tong X J, Meng P, Zhang J S et al., 2012. Ecosystem carbon exchange over a warm-temperate mixed plantation in the lithoid hilly area of the North China. Atmospheric Environment, 49(3): 257–267. doi: 10.1016/j.atmosenv.2011.11.049CrossRefGoogle Scholar
  49. Walkley A, Black I A, 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1): 29–38. doi: 10.1097/00010694-193401000-00003CrossRefGoogle Scholar
  50. Wan S Q, Luo Y Q, 2003. Substrate regulation of soil respiration in a tallgrass prairie: results of a clipping and shading experiment. Global Biogeochemical Cycles, 17(2): 1054. doi: 10. 1029/2002GB001971CrossRefGoogle Scholar
  51. Wan S Q, Norby R J, Ledford J et al., 2007. Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Global Change Biology, 13(11): 2411–2424. doi: 10.1111/j.1365-2486. 2007.01433.xCrossRefGoogle Scholar
  52. Wang C K, Yang J Y, Zhang Q Z, 2006. Soil respiration in six temperate forests in China. Global Change Biology, 12(11): 2103–2114. doi: 10.1111/j.1365-2486.2006.01234.xCrossRefGoogle Scholar
  53. Wang H, Liu S R, Wang J X et al., 2013. Effects of tree species mixture on soil organic carbon stocks and greenhouse gas fluxes in subtropical plantations in China. Forest Ecology and Management, 300(4): 4–13. doi: 10.1016/j.foreco.2012.04.005CrossRefGoogle Scholar
  54. Yang Tao, Wang Dexiang, Zhou Jinxing et al., 2009. Vegetation succession and species diversity dynamics of the plant communities in the loess hilly and gully region. Journal of Northwest Forestry University, 24(5): 10–15. (in Chinese)Google Scholar
  55. Yang Y S, Chen G S, Lin P et al., 2004. Fine root distribution, seasonal pattern and production in four plantations compared with a natural forest in subtropical China. Annals of Forest Science, 61(7): 617–627. doi: 10.1051/forest:2004062CrossRefGoogle Scholar
  56. Zeng X H, Zhang W J, Shen H T et al., 2014. Soil respiration response in different vegetation types at Mount Taihang, China. Catena, 116(5): 78–85. doi: 10.1016/j.catena.2013.12.018CrossRefGoogle Scholar
  57. Zhang L H, Chen Y N, Zhao R F et al., 2012. Soil carbon dioxide flux from shelterbelts in farmland in temperate arid region, northwest China. European Journal of Soil Biology, 48(1): 24–31. doi: 10.1016/j.ejsobi.2011.10.001CrossRefGoogle Scholar
  58. Zhang T, Li Y F, Chang S X et al., 2013. Responses of seasonal and diurnal soil CO2 effluxes to land-use change from paddy fields to Lei bamboo (Phyllostachys praecox) stands. Atmospheric Environment, 77(7): 856–864. doi: 10.1016/j.atmosenv. 2013.06.011CrossRefGoogle Scholar
  59. Zheng Z M, Yu G R, Fu Y L et al., 2009. Temperature sensitivity of soil respiration is affected by prevailing climatic conditions and soil organic carbon content: a trans-China based case study. Soil Biology and Biochemistry, 41(7): 1531–1540. doi: 10.1016/j.soilbio.2009.04.013CrossRefGoogle Scholar
  60. Zhou Guilian, Zhang Wanjun, 2012. Artificial biological soil crust property and potential for rainwater harvest. Chinese Journal of Eco-Agriculture, 20(10): 1329–1333. (in Chinese)CrossRefGoogle Scholar

Copyright information

© Science Press, Northeast Institute of Geography and Agricultural Ecology, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Environmental Science and EngineeringShanghai Jiaotong UniversityShanghaiChina
  2. 2.Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
  3. 3.Shanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina

Personalised recommendations