Skip to main content
Log in

Litter decomposition of emergent plants along an elevation gradient in wetlands of Yunnan Plateau, China

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

The decomposition of plant litter is a key process in the flows of energy and nutrients in ecosystems. However, the response of litter decomposition to global climate warming in plateau wetlands remains largely unknown. In this study, we conducted a one-year litter decomposition experiment along an elevation gradient from 1891 m to 3260 m on the Yunnan Plateau of Southwest China, using different litter types to determine the influences of climate change, litter quality and microenvironment on the decomposition rate. The results showed that the average decomposition rate (K) increased from 0.608 to 1.152, and the temperature sensitivity of litter mass losses was approximately 4.98%/°C along the declining elevation gradient. Based on a correlation analysis, N concentrations and C:N ratios in the litter were the best predictors of the decomposition rate, with significantly positive and negative correlations, respectively. Additionally, the cumulative effects of decomposition were clearly observed in the mixtures of Scirpus tabernaemontani and Zizania caduciflora. Moreover, the litter decomposition rate in the water was higher than that in the sediment, especially in high-elevation areas where the microenvironment was significantly affected by temperature. These results suggest that future climate warming will have significant impacts on plateau wetlands, which have important functions in biogeochemical cycling in cold highland ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aerts R, 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: triangular relationship. Oikos, 79(3): 439–449. doi: 10.2307/3546886

    Article  Google Scholar 

  • Aerts R, 2006. The freezer defrosting: Global warming and litter decomposition rates in cold biomes. Journal of Ecology, 94(4): 713–724. doi: 10.1111/j.1365-2745.2006.01142.x

    Article  Google Scholar 

  • Aerts R, De Caluwe H, 1997. Nutritional and plant mediated controls on leaf litter decomposition of Carex species. Ecology, 78(1): 244–260. doi: 10.2307/2265993

    Article  Google Scholar 

  • Antoine T, Bill S, 2015. The relationship between functional dispersion of mixed-species leaf litter mixtures and species’ interactions during decomposition. Oikos, 124(8): 1050–1057. doi: 10.1111/oik.01686

    Article  Google Scholar 

  • Averill C, Finzi A, 2011. Increasing plant use of organic nitrogen with elevation is reflected in nitrogen uptake rates and ecosystem δ15N. Ecology, 92(4): 883–891. doi: 10.1890/10-0746.1

    Article  Google Scholar 

  • Baldy V, Gobert V, Guerold F et al., 2007. Leaf litter breakdown budgets in streams of various trophic status: effects of dissolved inorganic nutrients on microorganisms and invertebrates. Freshwater Biology, 52(7): 1322–1335. doi: 10.1111/j.1365-2427.2007.01768.x

    Article  Google Scholar 

  • Belyea L R, 1996. Separating the effects of litter quality and microenvironment on decomposition rates in a patterned peatland. Oikos, 77(3): 529–539. doi: 10.2307/3545942

    Article  Google Scholar 

  • Beniston M, Diaz H F, Bradley R S, 1997. Climatic change at high elevation sites: an overview. Climatic Change, 36(3–4): 233–251. doi: 10.1023/A:1005380714349

    Article  Google Scholar 

  • Berg B, Wessen B, Ekbohm G, 1982. Nitrogen level and decomposition in Scots pine needle litter. Oikos, 38(3): 291–296. doi: 10.2307/3544667

    Article  Google Scholar 

  • Berg B, Berg M P, Bottner P et al., 1993. Litter mass loss rates in pine forests of Europe and eastern United States: some relationships with climate and litter quality. Biogeochemistry, 20(3): 127–159

    Article  Google Scholar 

  • Berg B, McClaugherty C, 2008. Plant Litter: Decomposition, Humus ormation, Carbon Sequestration. Heidelberg: Springer Verlag. doi: 10.1007/978-3-662-05349-2

    Book  Google Scholar 

  • Blair J M, Parmelee R W, Beare M H, 1990. Decay rates, nitrogen fluxes, and decomposer communities of single- and mixedspecies foliar litter. Ecology, 71(5): 1976–1985. doi: 10.2307/1937606

    Article  Google Scholar 

  • Bonanomi G, Incerti G, Giannino F et al., 2013. Litter quality assessed by solid state C-13 NMR spectroscopy predicts decay rate better than C/N and Lignin/N ratios. Soil Biology & Biochemistry, 56: 40–48. doi: 10.1016/j.soilbio.2012.03.003

    Article  Google Scholar 

  • Bosatta E, Staaf H, 1982. The control of nitrogen turn-over in forest litter. Oikos, 39(2): 143–151. doi: 10.2307/3544478

    Article  Google Scholar 

  • Boyero L, Pearson R G, Gessner M O et al., 2011. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecology Letters, 14(3): 289–294. doi: 10.1111/j.1461-0248.2010.01578.x

    Article  Google Scholar 

  • Bray S R, Kitajima K, Mack M C, 2012. Temporal dynamics of microbial communities on decomposing leaf litter of 10 plant species in relation to decomposition rate. Soil Biology & Biochemistry, 49: 30–37. doi: 10.1016/j.soilbio.2012.02.009

    Article  Google Scholar 

  • Cadish G, Giller K E, 1997. Driven by Nature, Plant Litter Quality and Decomposition. Wallingford: CAB International.

    Google Scholar 

  • Chacon N, Dezzeo N, 2007. Litter decomposition in primary forest and adjacent fire-disturbed forests in the Gran Sabana, southern Venezuela. Biology and Fertility of Soils, 43(6): 815–821. doi: 10.1007/s00374-007-0180-3

    Article  Google Scholar 

  • Clark M K, House M A, Royden L H et al., 2005. Late Cenozoic uplift of southeastern Tibet. Geology, 33(6): 525–528. doi: 10.1130/g21265.1

    Article  Google Scholar 

  • Couteaux M M, Bottner P, Berg B, 1995. Litter decomposition, climate and litter quality. Trends in Ecology and Evolution, 10(2): 63–66. doi: 10.1016/S0169-5347(00)88978-8

    Article  Google Scholar 

  • Cusack D F, Chou W W, Yang W H et al., 2009. Controls on long-term root and leaf litter decomposition in neotropical forests. Global Change Biology, 15(5): 1339. doi: 10.1111/j.1365-2486.2008.01781.x

    Article  Google Scholar 

  • Davidson E A, Janssens I A, 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440(7081): 165–173. doi: 10.1038/nature04514

    Article  Google Scholar 

  • Duboc O, Zehetner F, Djukic I et al., 2012. Decomposition of European beech and Black pine foliar litter along an Alpine elevation gradient: mass loss and molecular characteristics. Geoderma, 189–190: 522–531. doi: 10.1016/j.geoderma. 2012.06.018

    Article  Google Scholar 

  • Dunne J, Saleska S, Fisher M et al., 2004. Integrating experimental and gradient methods in ecological climate change research. Ecology, 85(4): 904–916. doi: 10.1890/03-8003

    Article  Google Scholar 

  • Edwards A C, Scalenghe R, Freppaz M, 2007. Changes in the seasonal snow cover of alpine regions and its effect on soil processes: a review. Quaternary International, 162: 172–181. doi: 10.1016/j.quaint.2006.10.027

    Article  Google Scholar 

  • Fan J W, Zhong H P, Harris W et al., 2008. Carbon storage in the grasslands of China based on field measurements of above-and below-ground biomass. Climate Change, 86(3–4): 375–396. doi: 10.1007/s10584-007-9316-6

    Article  Google Scholar 

  • Gartner T B, Cardon Z G, 2004. Decomposition dynamics in mixed-species leaf litter. Oikos, 104(2): 230–246. doi: 10.1111/j.0030-1299.2004.12738.x

    Article  Google Scholar 

  • Gavazov K, Mills R, Spiegelberger T et al., 2014. Biotic and abiotic Constraints on the decomposition of Fagus sylvatica leaf litter along an altitudinal gradient in contrasting land-use types. Ecosystems, 17(8): 1326–1337. doi: 10.1007/s10021-014-9798-9

    Article  Google Scholar 

  • Gavazov K S, 2010. Dynamics of alpine plant litter decomposition in a changing climate. Plant and Soil, 337(1–2): 19–32. doi: 10.1007/s11104-010-0477-0

    Article  Google Scholar 

  • Gholz H L, Wedin D A, Smitherman S M et al., 2000. Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology, 6(7): 751–765. doi: 10.1046/j.1365-2486. 2000.00349.x

    Article  Google Scholar 

  • Giller P S, Twomey H, 1993. Benthic macroinvertebrate community organisation in two contrasting rivers: between-site differences and seasonal patterns. Biology and Environment: Proceedings of the Royal Irish Academy, 93B(3): 115–126

    Google Scholar 

  • Guo Xuhu, Xiao Derong, Tian Kun et al., 2013. Biomass production and litter decomposition of lakeshore plants in Napahai wetland, Northwestern Yunnan Plateau, China. Acta Ecologica Sinica, 33(5): 1425–1432. (in Chinese)

    Article  Google Scholar 

  • Haapala A, Muotka T, 1998. Seasonal dynamics of detritus and associated macroinvertebrates in a channelized boreal stream. Archiv Fur Hydrobiologie, 142(2): 171–189. doi: 10.1127/archivhydrobiol/142/1998/171

    Article  Google Scholar 

  • Hector A, Beale A J, Minns A et al., 2000. Consequences of the reduction of plant diversity for litter decomposition: effects through litter quality and microenvironment. Oikos, 90(2): 357–371. doi: 10.1034/j.1600-0706.2000.900217.x

    Article  Google Scholar 

  • Hobbie S E, 2000. Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest. Ecosystems, 3(5): 484–494. doi: 10.1034/j.1600-0706.2000.900217.x

    Article  Google Scholar 

  • Hobbie S E, Chapin F S, 1996. Winter regulation of tundra litter carbon and nitrogen dynamics. Biogeochemistry, 35(2): 327–338. doi: 10.1007/BF02179958

    Article  Google Scholar 

  • Hobbie, S E, Shevtsova A, Chapin F S I, 1999. Plant responses to species removal and experimental warming in Alaskan tussock tundra. Oikos, 84(3): 417–434. doi: 10.2307/3546421

    Article  Google Scholar 

  • Holub S M, Spears J D H, Lajtha K, 2001. A reanalysis of nutrient dynamics in coniferous coarse woody debris. Canadian Journal of Forest Research, 31(11): 1894–1902. doi: 10.1139/x01-125

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change), 2014. Climate Change 2014 Synthesis Report Summary for Policymakers. Geneva, Switzerland.

    Google Scholar 

  • Jacob M, Viedenz K, Polle A et al., 2010. Leaf litter decomposition in temperate deciduous forest stands with a decreasing fraction of beech (Fagus sylvatica). Oecologia, 164(4): 1083. doi: 10.1007/s00442-010-1699-9

    Article  Google Scholar 

  • Kominoski J S, Pringle C M, Ball B A et al., 2007. Nonadditive effects of leaf litter species diversity on breakdown dynamics in a detritus-based stream. Ecology, 88(5): 1167–1176. doi: 10.1890/06-0674

    Article  Google Scholar 

  • KÖrner C, 2007. The use of ‘altitude’ in ecological research. Trends in Ecology and Evolution, 22(11): 569–574. doi: 10.1016/j.tree.2007.09.006

    Article  Google Scholar 

  • Kusler J, 2007. Common Questions: Wetland, Climate Change, and Carbon Sequestering. Association of State Wetland Managers.

    Google Scholar 

  • Liu G D, Sun J F, Tian K et al., 2017. Long term responses of leaf litter decomposition to temperature, litter quality and litter mixing in plateau wetlands. Freshwater Biology, 62(1): 178–190. doi: 10.1111/fwb.12860.

    Article  Google Scholar 

  • Liu G D, Tian K, Sun J F et al., 2016. Evaluating the effects of wetland restoration at the watershed scale in Northwest Yunnan Plateau, China. Wetlands, 36(1): 169–183. doi: 10.1007/s 13157-015-0727-2

    Article  Google Scholar 

  • Luo C Y, Xu G P, Chao Z G et al., 2010. Effect of warming and grazing on litter mass loss and temperature sensitivity of litter and dung mass loss on the Tibetan plateau. Global Change Biology, 16(5): 1606–1617. doi: 10.1111/j.1365-2486.2009. 02026.x

    Article  Google Scholar 

  • Malhi Y, Silman M, Salinas N et al., 2010. Introduction: Elevation gradients in the tropics: laboratories for ecosystems ecology and global change research. Global Change Biology, 16(12): 3171–3175. doi: 10.1111/j.1365-2486.2010.02323.x

    Article  Google Scholar 

  • Meentemeyer V, 1978. Macroclimate and lignin control of litter decomposition rates. Ecology, 59(3): 465–472. doi: 10.2307/1936576

    Article  Google Scholar 

  • Moorhead D L, Sinsabaugh R L, 2006. A theoretical model of litter decay and microbial interaction. Ecological Monographs, 76(2): 151–174. doi: 10.1890/0012-9615(2006)076%5B0151: ATMOLD%5D2.0.CO;2

    Article  Google Scholar 

  • Murphy K L, Klopatek J M, Klopatek C C, 1998. The effects of litter quality and climate on decomposition along an elevational gradient. Ecological Applications, 8(4): 1061–1071. doi: 10.1890/1051-0761(1998)008%5B1061:TEOLQA%5D2.0.CO;2

    Article  Google Scholar 

  • Olson J S, 1963. Energy-storage and balance of producers and decomposers in ecological-systems. Ecology, 44(2): 322–331. doi: 10.2307/1932179

    Article  Google Scholar 

  • Pei Z Y, Ouyang H, Zhou C P et al., 2009. Carbon balance in an alpine steppe in the Qinghai-Tibet plateau. Journal of Integrative Plant Biology, 51(5): 521–536. doi: 10.1111/j.1744-7909. 2009.00813.x

    Article  Google Scholar 

  • Pellissier L, Fournier B, Guisan A et al., 2010. Plant traits co-vary with altitude in grasslands and forests in the European Alps. Plant Ecology, 211(2): 351. doi: 10.1007/s11258-010-9794-x

    Article  Google Scholar 

  • Quested H M, Callaghan T V, Cornelissen J H C et al., 2005. The impact of hemiparasitic plant litter on decomposition: direct, seasonal and litter mixing effects. Journal of Ecology, 93(1): 87–98. doi: 10.1111/j.0022-0477.2004.00951.x

    Article  Google Scholar 

  • Rief A, Knapp B A, Seeber J, 2012. Palatability of selected alpine plant litters for the decomposer Lumbricus rubellus (Lumbricidae). Plos One, 7(9): e45345. doi: 10.1371/journal. pone.0045345

    Article  Google Scholar 

  • Robinson C H, 2002. Controls on decomposition and soil nitrogen availability at high latitudes. Plant and Soil, 242(1): 65–81. doi: 10.1023/A:1019681606112

    Article  Google Scholar 

  • Salinas N, Malhi Y, Meir P et al., 2011. The sensitivity of tropical leaf litter decomposition to temperature: results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests. New Phytologist, 189(4): 967–977. doi: 10.1111/j.1469-8137.2010.03521.x

    Article  Google Scholar 

  • Schoenbohm L M, Whipple K X, Burchfiel B C et al., 2004. Geomorphic constraints on surface uplift, exhumation, and plateau growth in the Red River region, Yunnan Province, China. Geological Society of America Bulletin, 116(7–8): 895–909. doi: 10.1130/B25364.1

    Article  Google Scholar 

  • Seastedt T R, 1984. The role of microarthropods in decomposition and mineralization processes. Annual Review of Entomology, 29: 25–46. doi: 10.1146/annurev.en.29.010184.000325

    Article  Google Scholar 

  • Shaw M R, Harte J, 2001. Control of litter decomposition in a subalpine meadow-sage brush steppe ecotome under climate change. Ecological Applications, 11(4): 1206–1223. doi: 10.2307/3061022

    Google Scholar 

  • Swift, M J, Heal O W, Anderson J M, 1979. Decomposition in Terrestrial Ecosystems. Berkeley: University of California Press.

    Google Scholar 

  • Taylor B R, Parkinson D, Parsons W F J, 1989. Nitrogen and lignin content as predictors of litter decay rates: A microcosm test. Ecology, 70(1): 97–104. doi: 10.2307/1938416

    Article  Google Scholar 

  • Tian K, Liu G D, Xiao D R et al., 2015. Ecological effects of Dam impoundment on closed and half-closed wetlands in China. Wetlands, 35(5): 889–898. doi: 10.1007/s13157-015-0679-6

    Article  Google Scholar 

  • van de Weg M J, Meir P, Grace J et al., 2009. Altitudinal variation in LMA, leaf tissue density and foliar nitrogen and phosphorus along an Andes–Amazon gradient in Peru. Plant Ecology and Diversity, 2(3): 243–254. doi: 10.1080/17550870903518045

    Article  Google Scholar 

  • Vitousek P, Turner D, Parton W et al., 1994. Litter decomposition on the Mauna Loa environmental matrix, Hawaii: Patterns, mechanisms and models. Ecology, 75(2): 418–429. doi: 10.2307/1939545

    Article  Google Scholar 

  • Wardle D A, Lavelle P, 1997. Linkages between soil biota, plant litter quality and decomposition. In: Cadish G and Giller K E (eds.). Driven by Nature: Plant Litter Quality and Decomposition. Wallingford: CAB International, 107–123

    Google Scholar 

  • Wardle D A, Bonner K I, Nicholson K S, 1997. Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos, 79(2): 247–258. doi: 10.2307/3546010

    Article  Google Scholar 

  • Williamsa B L, Alexandera C E, 1991. Interactions on mixing litters from beneath Sitka spruce and Scots pine and effects on microbial activity and N-mineralization. Soil Biology and Biochemistry, 23(1): 71–75. doi: 10.1016/0038-0717(91)90164-F

    Article  Google Scholar 

  • Xue Z S, Zhang Z S, Lu X G et al., 2014. Predicted areas of potential distributions of alpine wetlands under different scenarios in the Qinghai-Tibetan Plateau, China. Global and Planetary Change, 123(A): 77–85. doi: 10.1016/j.gloplacha.2014.10.012

    Article  Google Scholar 

  • Yoshimura C, Gessner M O, Tockner K et al., 2008. Chemical properties, microbial respiration, and decomposition of coarse and fine particulate organic matter. Journal of the North American Benthological Society, 27(3): 664–673. doi: 10.1899/07-106.1

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the teachers and students in the Environment Science and Engineering Laboratory of the Southwest Forestry University, for their help during field work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guodong Liu or Kun Tian.

Additional information

Foundation item: Under the auspices of Special Projects of National Key Basic Research Program of China (No. 2012CB426509), National Natural Science Foundation of China (No. 40971285, 31370497, 31500409), Yunnan Innovation Talents of Science and Technology Plan of China (No. 2012HC007)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Sun, J., Tian, K. et al. Litter decomposition of emergent plants along an elevation gradient in wetlands of Yunnan Plateau, China. Chin. Geogr. Sci. 27, 760–771 (2017). https://doi.org/10.1007/s11769-017-0898-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-017-0898-2

Keywords

Navigation