Skip to main content
Log in

A new method based on association rules mining and geo-filter for mining spatial association knowledge

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Association rule mining methods, as a set of important data mining tools, could be used for mining spatial association rules of spatial data. However, applications of these methods are limited for mining results containing large number of redundant rules. In this paper, a new method named Geo-Filtered Association Rules Mining (GFARM) is proposed to effectively eliminate the redundant rules. An application of GFARM is performed as a case study in which association rules are discovered between building land distribution and potential driving factors in Wuhan, China from 1995 to 2015. Ten sets of regular sampling grids with different sizes are used for detecting the influence of multi-scales on GFARM. Results show that the proposed method can filter 50%–70% of redundant rules. GFARM is also successful in discovering spatial association pattern between building land distribution and driving factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal R, Imieliński T, Swami A, 1993. Mining association rules between sets of items in large databases. Acm Sigmod Record, 22(2): 207–216. doi: 10.1145/170035.170072

    Article  Google Scholar 

  • Bertolotto M, Di Martino S, Ferrucci F et al., 2007. Towards a framework for mining and analysing spatio-temporal datasets. International Journal of Geographical Information Science, 21(8): 895–906. doi: 10.1080/13658810701349052

    Article  Google Scholar 

  • Bogorny V, Kuijpers B, Alvares L O, 2008. Reducing uninteresting spatial association rules in geographic databases using background knowledge: a summary of results. International Journal of Geographical Information Science, 22(4): 361–386. doi: 10.1080/13658810701412991

    Article  Google Scholar 

  • Demetriou D, Stillwell J, See L, 2013. A new methodology for measuring land fragmentation. Computers Environment and Urban Systems, 39: 71–80. doi: 10.1016/j.compenvurbsys. 2013.02.001

    Article  Google Scholar 

  • Wu Xizhi, Dong Chun, Zhao Rong et al., 2003. Application of geographical parameter database to establishment of unit population database. Chinese Geographical Science, 13(1): 34–38. doi: 10.1007/s11769-003-0082-8

    Article  Google Scholar 

  • Han J W, Pei J, Yin Y W et al., 2004. Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Mining and Knowledge Discovery, 8(1): 53–87. doi: 10.1023/B:Dami.0000005258.31418.83

    Article  Google Scholar 

  • Hipp J, Güntzer U, Nakhaeizadeh G, 2000. Algorithms for association rule mining: a general survey and comparison. ACM SIGKDD Explorations Newsletter, 2(1): 58–64. doi: 10.1145/360402.360421

    Article  Google Scholar 

  • Kamsu-Foguem B, Rigal F, Mauget F, 2013. Mining association rules for the quality improvement of the production process. Expert Systems with Applications, 40(4): 1034–1045. doi: 10.1016/j.eswa.2012.08.039

    Article  Google Scholar 

  • Kardan A A, Ebrahimi M, 2013. A novel approach to hybrid recommendation systems based on association rules mining for content recommendation in asynchronous discussion groups. Information Sciences, 219: 93–110. doi: 10.1016/j.ins.2012.07.011

    Article  Google Scholar 

  • Kok K, Veldkamp A, 2001. Evaluating impact of spatial scales on land use pattern analysis in Central America. Agriculture Ecosystems & Environment, 85(1): 205–221. doi: 10.1016/S0167-8809(01)00185-2

    Article  Google Scholar 

  • Koperski K, Han J, 1995. Discovery of Spatial Association Rules in Geographic Information Databases. Berlin, Heidelberg: Springer Berlin Heidelberg, 47–66. doi: 10.1007/3-540-60159-7_4

    Google Scholar 

  • Long J, Nelson T, Wulder M, 2010. Regionalization of landscape pattern indices using multivariate cluster analysis. Environmental Management, 46(1): 134–142. doi: 10.1007/s00267-010-9510-6

    Article  Google Scholar 

  • Mal-Sarkar S, Sikder I U, Konangi V K, 2016. Spatio-temporal pattern discovery in sensor data: a multivalued decision systems approach. Knowledge-Based Systems, 109: 137–146. doi: 10.1016/j.knosys.2016.06.032

    Article  Google Scholar 

  • Mao Kebiao, Ma Ying, Xia Lang et al., 2014. A neural network method for monitoring snowstorm: a case study in southern China. Chinese Geographical Science, 24(5): 599–606. doi: 10.1007/s11769-014-0675-4

    Article  Google Scholar 

  • Martínez-Ballesteros M, Bacardit J, Troncoso A et al., 2015. Enhancing the scalability of a genetic algorithm to discover quantitative association rules in large-scale datasets. Integrated Computer Aided Engineering, 22(1): 21–39. doi: 10.3233/ICA-140479

    Google Scholar 

  • Martín D, Rosete A, Alcalá-Fdez J et al., 2014. QAR-CIP-NSGAII: a new multi-objective evolutionary algorithm to mine quantitative association rules. Information Sciences, 258: 1–28. doi: 10.1016/j.ins.2013.09.009

    Article  Google Scholar 

  • Mennis J, Guo D, 2009. Spatial data mining and geographic knowledge discovery-an introduction. Computers Environment and Urban Systems, 33(6): 403–408. doi: 10.1016/j.compenvurbsys.2009.11.001

    Article  Google Scholar 

  • Mennis J, Liu J W, 2005. Mining association rules in spatio-temporal data: an analysis of urban socioeconomic and land cover change. Transactions in GIS, 9(1): 5–17. doi: 10.1111/j.1467-9671.2005.00202.x

    Article  Google Scholar 

  • Mo Minghao, Wang Xuelei, Wu Houjian et al., 2009. Ecosystem health assessment of Honghu Lake Wetland of China using artificial neural network approach. Chinese Geographical Science, 19(4): 349–356. doi: 10.1007/s11769-009-0349-9

    Article  Google Scholar 

  • Nahar J, Imam T, Tickle K S et al., 2013. Association rule mining to detect factors which contribute to heart disease in males and females. Expert Systems with Applications, 40(4): 1086–1093. doi: 10.1016/j.eswa.2012.08.028

    Article  Google Scholar 

  • Ng R T, Han J W, 2002. CLARANS: a method for clustering objects for spatial data mining. IEEE Transactions on Knowledge and Data Engineering, 14(5): 1003–1016. doi: 10.1109/tkde.2002.1033770

    Article  Google Scholar 

  • Rinzivillo S, Turini F, 2007. Knowledge discovery from spatial transactions. Journal of Intelligent Information Systems, 28(1): 1–22. doi: 10.1007/s10844-006-0001-4

    Article  Google Scholar 

  • Rossi G, Ferrarini A, Dowgiallo G et al., 2014. Detecting complex relations among vegetation, soil and geomorphology. An indepth method applied to a case study in the Apennines (Italy). Ecological Complexity, 17: 87–98. doi: 10.1016/j.ecocom. 2013.11.002

    Google Scholar 

  • Shaheen M, Shahbaz M, Guergachi A, 2013. Context based positive and negative spatio-temporal association rule mining. Knowledge-based Systems, 37: 261–273. doi: 10.1016/j.knosys.2012.08.010

    Article  Google Scholar 

  • Shekhar S, Jiang Z, Ali R Y et al., 2015. Spatiotemporal data mining: a computational perspective. Isprs International Journal of Geo-Information, 4(4): 2306–2338. doi: 10.3390/ijgi 4042306

    Article  Google Scholar 

  • Soysal Ö M, 2015. Association rule mining with mostly associated sequential patterns. Expert Systems with Applications, 42(5): 2582–2592. doi: 10.1016/j.eswa.2014.10.049

    Article  Google Scholar 

  • Xue C J, Song W J, Qin L J et al., 2015. A spatiotemporal mining framework for abnormal association patterns in marine environments with a time series of remote sensing images. International Journal of Applied Earth Observation and Geoinformation, 38: 105–114. doi: 10.1016/j.jag.2014.12.009

    Article  Google Scholar 

  • Yang Jun, Sun Jing, Zhao Hongdan et al., 2016. Spatio-temporal differentiation of residential land for coastal town: a case study of Dalian Jinshitan. Chinese Geographical Science, 26(4): 566–576. doi: 10.1007/s11769-016-0826-x

    Article  Google Scholar 

  • Yang J, Xie P, Xi J C et al., 2013. Spatiotemporal simulation of tourist town growth based on the cellular automata model: the case of Sanpo Town in Hebei Province. Abstract and Applied Analysis, (4): 1–7. doi: 10.1155/2013/975359

    Google Scholar 

  • You D M, Zhou J G, Wang J H et al., 2011. Analysis of relations of heavy metal accumulation with land utilization using the positive and negative association rule method. Mathematical and Computer Modelling, 54(3): 1005–1009. doi: 10.1016/j.mcm.2010.11.028

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Xie.

Additional information

Foundation item: Under the auspices of Special Fund of Ministry of Land and Resources of China in Public Interest (No. 201511001)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xie, P., He, Q. et al. A new method based on association rules mining and geo-filter for mining spatial association knowledge. Chin. Geogr. Sci. 27, 389–401 (2017). https://doi.org/10.1007/s11769-017-0873-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-017-0873-y

Keywords

Navigation