Skip to main content
Log in

Regional variation in carbon sequestration potential of forest ecosystems in China

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Enhancing forest carbon (C) storage is recognized as one of the most economic and green approaches to offsetting anthropogenic CO2 emissions. However, experimental evidence for C sequestration potential (C sp) in China’s forest ecosystems and its spatial patterns remain unclear, although a deep understanding is essential for policy-makers making decisions on reforestation. Here, we surveyed the literature from 2004 to 2014 to obtain C density data on forest ecosystems in China and used mature forests as a reference to explore C sp. The results showed that the C densities of vegetation and soil (0–100 cm) in China’s forest ecosystems were about 69.23 Mg C/ha and 116.52 Mg C/ha, respectively. In mature forests, the C sp of vegetation and soil are expected to increase to 129.26 Mg C/ha (87.1%) and 154.39 Mg C/ha (32.4%) in the coming decades, respectively. Moreover, the potential increase of C storage in vegetation (10.81 Pg C) is estimated at approximately twice that of soil (5.01 Pg C). Higher C sp may occur in the subtropical humid regions and policy-makers should pay particular attention to the development of new reforestation strategies for these areas. In addition to soil nutrients and environment, climate was an important factor influencing the spatial patterns of C density in forest ecosystems in China. Interestingly, climate influenced the spatial patterns of vegetation and soil C density via different routes, having a positive effect on vegetation C density and a negative effect on soil C density. This estimation of the potential for increasing forest C storage provided new insights into the vital roles of China’s forest ecosystems in future C sequestration. More importantly, our findings emphasize that climate constraints on forest C sequestration should be considered in reforestation strategies in China because the effects of climate were the opposite for spatial patterns of C density in vegetation and soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barto E K, Alt F, Oelmann Y et al., 2010. Contributions of biotic and abiotic factors to soil aggregation across a land use gradient. Soil Biology & Biochemistry, 42: 2316–2324. doi: 10.1016/j.soilbio.2010.09.008

    Article  Google Scholar 

  • Bonan G B, 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320(5882): 1444–1449. doi: 10.1126/science.1155121

    Article  Google Scholar 

  • Chai Hua, Yu Guirui, He Nianpeng et al., 2015. Vertical distribution of soil carbon, nitrogen, and phosphorus in typical Chinese terrestrial ecosystems. Chinese Geographical Science, 25(5): 549–560. doi: 10.1007/s11769-015-0756-z

    Article  Google Scholar 

  • Cheng L A, Mendonca G, de Farias J C, 2014. Physical activity in adolescents: analysis of the social influence of parents and friends, Jornal de Pediatria-Brazil, 90(1): 35–41. doi: 10.1016/j.jpedp.2013.05.005

    Article  Google Scholar 

  • Cook R L, Binkley D, Mendes J C T et al., 2014. Soil carbon stocks and forest biomass following conversion of pasture to broadleaf and conifer plantations in southeastern Brazil. Forest Ecology Management, 324: 37–45. doi: 10.1016/j.foreco.2014.03.019

    Article  Google Scholar 

  • Cox P M, Betts R A, Jones C D et al., 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408: 184–187. doi: 10.1038/35041539

    Article  Google Scholar 

  • Davidson E A, Trumbore S E, Amundson R, 2000. Biogeochemistry: soil warming and organic carbon content. Nature, 408: 789–790. doi: 10.1038/35048672

    Article  Google Scholar 

  • Fang J Y, Chen A P, Peng C H et al., 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292(5525): 2320–2322. doi: 10.1126/science.1058629

    Article  Google Scholar 

  • Fang J Y, Guo Z D, Hu H F et al., 2014. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Global Change Biology, 20(6): 2019–2030. doi: 10.1111/gcb.12512

    Article  Google Scholar 

  • Fang J Y, Guo Z D, Piao S L et al., 2007. Terrestrial vegetation carbon sinks in China, 1981–2000. Science in China Series D: Earth Sciences, 50(9): 1341–1350. doi: 10.1007/s11430-007-0049-1

    Article  Google Scholar 

  • Foody G M, Boyd D S, Cutler M E J, 2003. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sensing Environment, 85(4): 463–474. doi: 10.1016/S0034-4257(03)00039-7

    Article  Google Scholar 

  • Fu Bojie, Liu Guohua, Chen Liding et al., 2001. Scheme of ecological regionalization in China. Acta Ecological Sinica, 21(1): 1–6. (in Chinese)

    Google Scholar 

  • Gao Yangzi, He Honglin, Zhang Li et al., 2013. Spatio-temporal variation characteristics of surface net radiation in China over the past 50 years. Journal of Geo-Information Science, 15(1): 1–10. (in Chinese)

    Article  Google Scholar 

  • Gower S T, 2003. Patterns and mechanisms of the forest carbon cycle. Annual Review of Environment and Resources, 28: 169–204. doi: 10.1146/annurev.energy.28.050302.105515

    Article  Google Scholar 

  • Guo Z D, Hu H F, Li P et al., 2013. Spatio-temporal changes in biomass carbon sinks in China’s forests from 1977 to 2008. Science China Life Sciences, 56(7): 661–671. doi: 10.1007/s 11427-013-4492-2

    Article  Google Scholar 

  • He N P, Yu Q, Wu L et al., 2008. Carbon and nitrogen store and storage potential as affected by land-use in a Leymus chinensis grassland of northern China. Soil Biology & Biochemistry, 40(12): 2952–2959. doi: 10.1016/j.soilbio.2008.08.018

    Article  Google Scholar 

  • Horn H S, 1975. Forest Succession. Scientific American, 232(5): 90–98. doi: 10.1038/scientificamerican0575-90

    Article  Google Scholar 

  • Houghton R A, 2005. Aboveground forest biomass and the global carbon balance. Global Change Biology, 11(6): 945–958. doi: 10.1111/j.1365-2486.2005.00955.x

    Article  Google Scholar 

  • Hudiburg T, Law B, Turner D P et al., 2009. Carbon dynamics of Oregon and Northern California forests and potential landbased carbon storage. Ecological Application, 19(1): 163–180. doi: 10.1890/07-2006.1

    Article  Google Scholar 

  • Jarvis P G, 1989. Atmospheric carbon-dioxide and forests. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 324(1223): 369–392. doi: 10.1098/rstb. 1989.0053

    Article  Google Scholar 

  • Jia Y L, Yu G R, He N P et al., 2014. Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. Scientific Reports, 4: 3763. doi: 10.1038/srep03763

    Article  Google Scholar 

  • Jimenez J J, Lal R, Russo R O et al., 2008. The soil organic carbon in particle-size separates under different regrowth forest stands of north eastern Costa Rica. Ecological Engineering, 34(4): 300–310. doi: 10.1016/j.ecoleng.2008. 07.001

    Article  Google Scholar 

  • Jobbágy E G and Jackson R B, 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Application, 10(2): 423–436. doi: 10.2307/2641104

    Article  Google Scholar 

  • Johnson M G, E. R. Levine, Kern J S, 1995. Soil organic matter distribution, genesis, and management to reduce greenhousegas emissions. Water Air Soil Poll, 82(3): 593–615. doi: 10.1007/BF0049414

    Article  Google Scholar 

  • Keith H, Mackey B, Lindenmayer D B, 2009. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proceedings of the National Academy of Sciences, 106(28): 11635–11640. doi: 10.1073/pnas.0901970106

    Article  Google Scholar 

  • Lal R, 2005. Forest soils and carbon sequestration. Forest Ecology and Management, 220(1): 242–258. doi: 10.1016/j.foreco.2005.08.015

    Article  Google Scholar 

  • LeBauer D S, Treseder K K, 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89(2): 371–379. doi: 10.1890/06-2057.1

    Article  Google Scholar 

  • Lewis S L, Lopez-Gonzalez G, Sonké B et al., 2009. Increasing carbon storage in intact African tropical forests. Nature, 457: 1003–1007. doi: 10.1038/nature07771

    Article  Google Scholar 

  • Li Haikui, Lei Yuancai, Zeng Weisheng, 2011. Forest carbon storage in China estimated using forestry inventory data. Scientia Silvae Sincae, 47(7): 7–12. (in Chinese)

    Google Scholar 

  • Li K R, Wang S Q, Cao M K, 2004. Vegetation and soil carbon storage in China. Science in China Series D: Earth Sciences, 47(1): 49–57. doi: 10.1360/02yd0029

    Article  Google Scholar 

  • Liu Guohua, Fu Bojie, Fang Jingyun, 2000. Carbon dynamics of Chinese forests and its contribution to global carbon balance. Acta Ecological Sinica, 20(5): 732–740. (in Chinese)

    Google Scholar 

  • Liu Jiyuan, Buheaosier, 2000. Study on spatial-temporal feature of modern land-use change in China: using remote sensing techniques. Quaternary Sciences, 20(3): 229–239. (in Chinese)

    Google Scholar 

  • Liu Y C, Yu G R, Wang Q F et al., 2012. Huge carbon sequestration potential in global forests. Journal of Resourources and Ecology, 3(3): 193–201. doi: 10.5814/j.issn. 1674-764x.2012.03.001

    Article  Google Scholar 

  • Luyssaert S, Schulze E D, Borner A et al., 2008. Old-growth forests as global carbon sinks. Nature, 455: 213–215. doi: 10.1038/nature07276

    Article  Google Scholar 

  • Ma J, Bu R C, Liu M et al., 2015. Ecosystem carbon storage distribution between plant and soil in different forest types in Northeastern China. Ecological Engineering, 81: 353–362. doi: 10.1016/j.ecoleng.2015.04.080

    Article  Google Scholar 

  • McKinley D C, Ryan M G, Birdsey R A et al., 2011. A synthesis of current knowledge on forests and carbon storage in the United States. Ecological Applications, 21(6): 1902–1924. doi: 10.1890/10-0697.1

    Article  Google Scholar 

  • Orchard V A, Cook F J, 1983. Relationship between soil respiration and soil-moisture. Soil Biology & Biochemistry, 15(4): 447–453. doi: 10.1016/0038-0717(83)90010-x

    Article  Google Scholar 

  • Pan Y D, Luo T X, Birdsey R et al., 2004. New estimates of carbon storage and sequestration in China’s forests: effects of age-class and method on inventory-based carbon estimation. Climatic Change, 67: 211–236. doi: 10.1007/s10584-004-2799-5

    Article  Google Scholar 

  • Pan Y, Birdsey R A, Fang J Y et al., 2011. A large and persistent carbon sink in the world’s forests. Science, 333(6045): 988–993. doi: 10.1126/science.1201609

    Article  Google Scholar 

  • Post W M, Emanuel W R, Zinke P J et al., 1982. Soil carbon pools and world life zones. Nature, 298: 156–159. doi: 10.1038/298156a0

    Article  Google Scholar 

  • Shugart H H, West D C, 1980. Forest succession models. Bioscience, 30(5): 308–313. doi: 10.2307/1307854

    Article  Google Scholar 

  • Six J, Conant R T, Paul E A et al., 2002. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil, 241(2): 155–176. doi: 10.1023/A:1016125726789

    Article  Google Scholar 

  • Stewart C E, Paustian K, Conant R T et al., 2007. Soil carbon saturation: concept, evidence and evaluation. Biogeochemistry, 86(1): 19–31. doi: 10.1007/s10533-007-9140-0

    Article  Google Scholar 

  • Thomas R Q, Canham C D, Weathers K C et al., 2010. Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geoscience, 3: 13–17. doi: 10.1038/ngeo721

    Article  Google Scholar 

  • Wang Q F, Zheng H, Zhu X J et al., 2015. Primary estimation of Chinese terrestrial carbon sequestration during 2001-2010. Science Bulletin, 60(6): 577–590. doi: 10.1007/s11434-015-0736-9

    Article  Google Scholar 

  • Wang Q, He N P, Yu G R et al., 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: patterns and influencing factors. Journal of Geophysical Research-Biogeosciences, 121(2): 399–410. doi: 10.1002/2015JG003217

    Article  Google Scholar 

  • Wang Shaoqiang, Liu Jiyuan, Yu Guirui, 2003. Error analysis of estimating terrestrial soil organic carbon storage in China. Chinese Journal of Applied Ecology, 14(5): 797–802. (in Chinese)

    Google Scholar 

  • Wang Shaoqiang, Zhou Chenghu, Li Kerang et al., 2000. Analysis on spatial distribution characteristics of soil organic carbon reservoir in China. Acta Geographica Sinica, 55(5): 533–544. (in Chinese)

    Google Scholar 

  • Wen D, He N P, 2016. Spatial patterns and control mechanisms of carbon storage in forest ecosystem: evidence from the north-south transect of eastern China. Ecological Indicators, 61: 960–967. doi: 10.1016/j.ecolind.2015.10.054

    Article  Google Scholar 

  • West T O, Six J, 2007. Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity. Climatic Change, 80(1): 25–41. doi: 10.1007/s 10584-006-9173-8

    Article  Google Scholar 

  • Xie Xianli, Sun Bo, Zhou Huizhen et al., 2004. Soil carbon stocks and their influencing factors under native vegetations in China. Acta Pedologica Sinica, 41(5): 687–699. (in Chinese)

    Google Scholar 

  • Xu B, Guo Z D, Piao S L et al., 2010. Biomass carbon stocks in China’s forests between 2000 and 2050: a prediction based on forest biomass-age relationships. Science China Life Sciences, 53(7): 776–783. doi: 10.1007/s11427-010-4030-4

    Article  Google Scholar 

  • Xu L, He N P, Yu G R et al., 2015. Differences in pedotransfer functions of bulk density lead to high uncertainty in soil organic carbon estimation at regional scales: evidence from Chinese terrestrial ecosystems. Journal of Geophysical Research-Biogeosciences, 120(8): 1567–1575. doi: 10.1002/2015JG002929

    Article  Google Scholar 

  • Yang Y H, Li P, Ding J Z et al., 2014. Increased topsoil carbon stock across China’s forests. Global Change Biology, 20: 2687–2696. doi: 10.1111/gcb.12536

    Article  Google Scholar 

  • Yang Y H, Luo Y Q, Finzi A C, 2011. Carbon and nitrogen dynamics during forest stand development: a global synthesis. New Phytologist, 190(4): 977–989. doi: 10.1111/j.1469-8137. 2011.03645-x

    Article  Google Scholar 

  • Yang Y H, Mohammat A, Feng J M et al., 2007. Storage, pattern and environmental controls of soil organic carbon in China. Biogeochemistry, 84(2): 131–141. doi: 10.1007/s.10533-007-9109-z

    Article  Google Scholar 

  • Yu G R, Chen Z, Piao S L et al., 2014. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proceedings of the National Academy of Sciences, 111(13): 4910–4915. doi: 10.1073/pnas.1317065111

    Article  Google Scholar 

  • Zak D R, Grigal D F, Gleeson S et al., 1990. Carbon and nitrogen cycling during old-field succession: constraints on plant and microbial biomass. Biogeochemistry, 11(2): 111–129. doi: 10.1007/BF00002062

    Article  Google Scholar 

  • Zhang D Q, Hui D F, Luo Y Q et al., 2008. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. Journal of Plant Ecology, 1(2): 85–93. doi: 10.1093/jpe/rtn002

    Article  Google Scholar 

  • Zhao M, Zhou G S, 2005. Estimation of biomass and net primary productivity of major planted forests in China based on forest inventory data. Forest Ecology and Management, 207(3): 295–313. doi: 10.1016/j.foreco.2004.10.049

    Article  Google Scholar 

  • Zhou G Y, Liu S G, Li Z et al., 2006. Old-growth forests can accumulate carbon in soils. Science, 314(5804): 1417–1417. doi: 10.1126/science.1130168

    Article  Google Scholar 

  • Zhou Yurong, Yu Zhenliang, Zhao Shidong, 2000. Carbon storage and budget of major Chinese forest types. Chinese Journal of Plant Ecology, 24(5): 518–522. (in Chinese)

    Google Scholar 

  • Zhu J X, He N P, Wang Q F et al., 2015. The composition, spatial patterns, and influencing factors of atmospheric nitrogen deposition in Chinese terrestrial ecosystems. Science of the Total Environment, 511: 777–785. doi: 10.1016/j.scitotenv. 2014.12.038

    Article  Google Scholar 

Download references

Acknowledgements

We appreciated the data shared by the National Data Sharing Infrastructure of Earth System Science (http://www.geodata.cn). Data share should contact with He Nianpeng.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nianpeng He.

Additional information

Foundation item: Under the auspices of National Natural Science Foundation of China (No. 31290221, 41571130043, 31570471), Chinese Academy of Sciences Strategic Priority Research Program (No. XDA05050702), Program for Kezhen Distinguished Talents in Institute of Geographic Sciences and Natural Resources Research of Chinese Academy of Sciences (No. 2013RC102), Program of Youth Innovation Promotion Association of Chinese Academy of Sciences

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Wen, D., Zhu, J. et al. Regional variation in carbon sequestration potential of forest ecosystems in China. Chin. Geogr. Sci. 27, 337–350 (2017). https://doi.org/10.1007/s11769-017-0870-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-017-0870-1

Keywords

Navigation