Skip to main content

Advertisement

Log in

Influence of climate on soil organic carbon in Chinese paddy soils

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Soil organic carbon (SOC) is a major component of the global carbon cycle and has a potentially large impact on the greenhouse effect. Paddy soils are important agricultural soils worldwide, especially in Asia. Thus, a better understanding of the relationship between SOC of paddy soils and climate variables is crucial to a robust understanding of the potential effect of climate change on the global carbon cycle. A soil profile data set (n = 1490) from the Second National Soil Survey of China conducted from 1979 to 1994 was used to explore the relationships of SOC density with mean annual temperature (MAT) and mean annual precipitation (MAP) in six soil regions and eight paddy soil subgroups. Results showed that SOC density of paddy soils was negatively correlated with MAT and positively correlated with MAP (P < 0.01). The relationships of SOC density with MAT and MAP were weak and varied among the six soil regions and eight paddy soil subgroups. A preliminary assessment of the response of SOC in Chinese paddy soils to climate indicated that climate could lead to a 13% SOC loss from paddy soils. Compared to other soil regions, paddy soils in Northern China will potentially more sensitive to climate change over the next several decades. Paddy soils in Middle and Lower Yangtze River Basin could be a potential carbon sink. Reducing the climate impact on paddy soil SOC will mitigate the positive feedback loop between SOC release and global climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Alvarez R, Lavado R S, 1998. Climate, organic matter and clay content relationships in the Pampa and Chaco soils, Argentina. Geoderma, 83: 127–141. doi: 10.1016/S0016-7061(97)00141-9

    Article  Google Scholar 

  • Álvaro-Fuentes J, Easter M, Paustian K, 2012. Climate change effects on organic carbon storage in agricultural soils of northeastern Spain. Agriculture, Ecosystems & Environment, 155: 87–94. doi: 10.1016/j.agee.2012.04.001

    Article  Google Scholar 

  • Batjes N H, 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47: 151–163. doi: 10.1111/j.1365-2389.1996.tb01386.x

    Article  Google Scholar 

  • Bradford M A, Davies C A, Frey S D et al., 2008. Thermal adaptation of soil microbial respiration to elevated temperature. Ecology Letters, 11: 1316–1327. doi: 10.1111/j.1461-0248. 2008.01251.x

    Article  Google Scholar 

  • Brye K R, McMullen R L, Silveira M L et al., 2016. Environmental controls on soil respiration across a southern US climate gradient: a meta-analysis. Geoderma Regional, 7: 110–119. doi: 10.1016/j.geodrs.2016.02.005

    Article  Google Scholar 

  • Chen L F, He Z B, Du J et al., 2016a. Patterns and environmental controls of soil organic carbon and total nitrogen in alpine ecosystems of northwestern China. Catena, 137: 37–43. doi: 10.1016/j.catena.2015.08.017

    Article  Google Scholar 

  • Chen S, Xu C, Yan J et al., 2016b. The influence of the type of crop residue on soil organic carbon fractions: an 11-year field study of rice-based cropping systems in southeast China. Agriculture, Ecosystems & Environment, 223: 261–269. doi: 10.1016/j.agee.2016.03.009

    Article  Google Scholar 

  • Dai W H, Huang Y, 2006. Relation of soil organic matter concentration to climate and altitude in zonal soils of China. Catena, 65: 87–94. doi: 10.1016/j.catena.2005.10.006

    Article  Google Scholar 

  • Eswaran H, Berg E V D, Reich P, 1993. Organic carbon in soil of the world. Soil Science Society of America Journal, 57: 192–194.

    Article  Google Scholar 

  • Fantappiè M, L’Abate G, Costantini E A C, 2011. The influence of climate change on the soil organic carbon content in Italy from 1961 to 2008. Geomorphology, 135: 343–352. doi: 10.1016/j.geomorph.2011.02.006

    Article  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations), 2008. Statistical Database of the Food and Agriculture Organization of the United Nations. http://faostat.fao.org/default. aspx2008

    Google Scholar 

  • Farina R, Seddaiu G, Orsini R et al., 2011. Soil carbon dynamics and crop productivity as influenced by climate change in a rainfed cereal system under contrasting tillage using EPIC. Soil and Tillage Research, 112: 36–46. doi: 10.1016/j.still. 2010.11.002

    Article  Google Scholar 

  • Ganuza A, Almendros G, 2003. Organic carbon storage in soils of the Basque Country (Spain): the effect of climate, vegetation type and edaphic variables. Biology and Fertility of Soils, 37: 154–162. doi: 10.1007/s00374-003-0579-4

    Google Scholar 

  • Gong Zitong. 1999. Chinese Soil Taxonomic Classification. Beijing: Science Press. (in Chinese)

    Google Scholar 

  • Hamdi S, Chevallier T, Ben Aïssa N et al., 2011. Short-term temperature dependence of heterotrophic soil respiration after one-month of pre-incubation at different temperatures. Soil Biology and Biochemistry, 43: 1752–1758. doi: 10.1016/j.soilbio.2010.05.025

    Article  Google Scholar 

  • Haque M M, Kim S Y, Kim G W et al., 2015. Optimization of removal and recycling ratio of cover crop biomass using carbon balance to sustain soil organic carbon stocks in a mono-rice paddy system. Agriculture, Ecosystems & Environment, 207: 119–125. doi: 10.1016/j.agee.2015.03.022

    Article  Google Scholar 

  • He N P, Wang R M, Zhang Y H et al., 2014. Carbon and nitrogen storage in Inner Mongolian grasslands: relationships with climate and soil texture. Pedosphere, 24: 391–398. doi: 10.1016/S1002-0160(14)60025-4

    Article  Google Scholar 

  • Hok L, de Moraes Sá J C, Boulakia S et al., 2015. Short-term conservation agriculture and biomass-C input impacts on soil C dynamics in a savanna ecosystem in Cambodia. Agriculture, Ecosystems & Environment, 214: 54–67. doi: 10.1016/j.agee. 2015.08.013

    Article  Google Scholar 

  • Homann P S, Sollins P, Chappell H N et al., 1995. Soil organic carbon in a mountainous, forested region: relation to site characteristics Soil Science Society of America Journal, 59: 1468–1475. doi: 10.2136/sssaj1995.03615995005900050037x

    Article  Google Scholar 

  • Hontoria C, Rodríguez-Murillo J C, Saa A, 1999. Relationships between soil organic carbon and site characteristics in Peninsular Spain. Soil Science Society of America Journal, 63: 614–621. doi: 10.2136/sssaj1999.03615995006300030026x

    Article  Google Scholar 

  • IPCC. 2007. Climate Change 2007: Impacts, Adaptation and Vulnerability. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • IUSS Working Group WRB, 2007. World reference base for soil resources 2006, First update 2007. Soil Resources Reports No. 103. Rome: FAO.

    Google Scholar 

  • Kibet L C, Blanco-Canqui H, Jasa P, 2016. Long-term tillage impacts on soil organic matter components and related properties on a Typic Argiudoll. Soil and Tillage Research, 155: 78–84. doi: 10.1016/j.still.2015.05.006

    Article  Google Scholar 

  • Kirschbaum M U F, 2006. The temperature dependence of organic-matter decomposition–still a topic of debate. Soil Biology and Biochemistry, 38: 2510–2518. doi: 10.1016/j.soilbio. 2006.01.030

    Article  Google Scholar 

  • Kruse J, Simon J, Rennenberg H, 2013. Chapter 7 -Soil respiration and soil organic matter decomposition in response to climate change. In: Matyssek R et al. (eds.). Developments in Environmental Science. Elsevier, 131–149.

    Google Scholar 

  • Lal R, 2004. Soil carbon sequestration to mitigate climate change. Geoderma, 123: 1–22. doi: 10.1016/j.geoderma.2004.01.032

    Article  Google Scholar 

  • Lal R, Kimble J M, Levine E et al., 1995. World soils and greenhouse effect: An overview. In: Lal R et al. (eds.). Soils and Global Change. Boca Raton, FL: CRC Press, 1–8.

    Google Scholar 

  • Lassaletta L, Aguilera E, 2015. Soil carbon sequestration is a climate stabilization wedge: comments on Sommer and Bossio (2014). Journal of Environmental Management, 153: 48–49. doi: 10.1016/j.jenvman.2015.01.038

    Article  Google Scholar 

  • Li Qingqui. 1992. Paddy Soil of China. Beijing: Science Press. (in Chinese)

    Google Scholar 

  • Liu Q H, Shi X Z, Weindorf D C et al., 2006. Soil organic carbon storage of paddy soils in China using the 1:1,000,000 soil database and their implications for C sequestration. Global Biogeochemical Cycles, 20: GB3024. doi: 10.1029/2006GB 002731

    Article  Google Scholar 

  • Longbottom T L, Townsend-Small A, Owen L A et al., 2014. Climatic and topographic controls on soil organic matter storage and dynamics in the Indian Himalaya: Potential carbon cycle–climate change feedbacks. Catena, 119: 125–135. doi: 10.1016/j.catena.2014.03.002

    Article  Google Scholar 

  • Martin D, Lal T, Sachdev C et al., 2010. Soil organic carbon storage changes with climate change, landform and land use conditions in Garhwal hills of the Indian Himalayan mountains. Agriculture, Ecosystems & Environment, 138: 64–73. doi: 10.1016/j.agee.2010.04.001

    Article  Google Scholar 

  • Melillo J M, McGuire A D, Kicklighter D W et al., 1993. Global climate change and terrestrial net primary production. Nature, 363: 234–240. doi: 10.1038/363234a0

    Article  Google Scholar 

  • Muñoz-Rojas M, Doro L, Ledda L et al., 2015. Application of CarboSOIL model to predict the effects of climate change on soil organic carbon stocks in agro-silvo-pastoral Mediterranean management systems. Agriculture, Ecosystems & Environment, 202: 8–16. doi: 10.1016/j.agee.2014.12.014

    Article  Google Scholar 

  • National Soil Survey Office, 1996. Soil Species of China I–VI. Beijing: China Agriculture Press. (in Chinese)

    Google Scholar 

  • Office for the Second National Soil Survey of China. 1995. Soil Map of People’s Republic of China. Beijing: Mapping Press. (in Chinese)

    Google Scholar 

  • Olsson A, Campana P E, Lind M et al., 2014. Potential for carbon sequestration and mitigation of climate change by irrigation of grasslands. Applied Energy, 136: 1145–1154. doi: 10.1016/j.apenergy.2014.08.025

    Article  Google Scholar 

  • Page A L, Miller R H, Keeney D R, 1982. Methods of Soil Analysis Part 2-Chemical and Microbiological Properties. 2nd edn. ASA, Madison.

    Google Scholar 

  • Pan G X, Li L Q, Wu L S et al., 2003. Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Global Change Biology, 10: 79–92. doi: 10.1111/j.1365-2486. 2003.00717.x

    Article  Google Scholar 

  • Pinheiro É F M, de Campos D V B, de Carvalho Balieiro F et al., 2015. Tillage systems effects on soil carbon stock and physical fractions of soil organic matter. Agricultural Systems, 132: 35–39. doi: 10.1016/j.agsy.2014.08.008

    Article  Google Scholar 

  • Qin Falyu, Shi Xuezheng, Xu Shengxiang et al., 2016. Zonal differences in correlation patterns between soil organic carbon and climate factors at multi-extent. Chinese Geographical Science, 26(5): 670–678. doi: 10.1007/s11769-015-0736-3

    Article  Google Scholar 

  • Routh J, Hugelius G, Kuhry P et al., 2014. Multi-proxy study of soil organic matter dynamics in permafrost peat deposits reveal vulnerability to climate change in the European Russian Arctic. Chemical Geology, 368: 104–117. doi: 10.1016/j.chemgeo.2013.12.022

    Article  Google Scholar 

  • Shi X Z, Yang R W, Weindorf D C et al., 2010a. Simulation of organic carbon dynamics at regional scale for paddy soils in China. Climatic Change, 102: 579–593. doi: 10.1007/s10584-009-9704-1

    Article  Google Scholar 

  • Shi X Z, Yu D S, Warner E D et al., 2006a. Cross-reference system for translating between genetic soil classification of China and soil taxonomy. Soil Science Society of American Journal, 70: 78–83. doi: 10.2136/sssaj2004.0318

    Article  Google Scholar 

  • Shi X Z, Yu D S, Xu S X et al., 2010b. Cross-reference for relating Genetic Soil Classification of China with WRB at different scales. Geoderma, 155: 344–350. doi: 10.1016/j.geoderma. 2009.12.017

    Article  Google Scholar 

  • Shi X Z, Yu D S, Yang G X et al., 2006b. Cross-reference benchmarks for translating the Genetic Soil Classification of China into the Chinese Soil Taxonomy. Pedosphere, 16: 147–153. doi: 10.1016/S1002-0160(06)60037-4

    Article  Google Scholar 

  • Sollins P, Homann P, Caldwell B A, 1996. Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma, 74: 65–105. doi: 10.1016/S0016-7061(96)00036-5

    Article  Google Scholar 

  • Sommer R, and Bossio D, 2014. Dynamics and climate change mitigation potential of soil organic carbon sequestration. Journal of Environmental Management, 144: 83–87. doi: 10.1016/j.jenvman.2014.05.017

    Article  Google Scholar 

  • Spain A V, 1990. Influence of environmental conditions and some soil chemical properties on the carbon and nitrogen contents of some tropical Australian rainforest soils. Australian Journal of Soil Research, 28: 825–839. doi: 10.1071/SR9900825

    Article  Google Scholar 

  • Thomson A M, Izaurralde R C, Rosenberg N J et al., 2006. Climate change impacts on agriculture and soil carbon sequestration potential in the Huang-Hai Plain of China. Agriculture, Ecosystems & Environment, 114: 195–209. doi: 10.1016/j.agee.2005.11.001

    Article  Google Scholar 

  • Toriyama J, Hak M, Imaya A et al., 2015. Effects of forest type and environmental factors on the soil organic carbon pool and its density fractions in a seasonally dry tropical forest. Forest Ecology and Management, 335: 147–155. doi: 10.1016/j.foreco.2014.09.037

    Article  Google Scholar 

  • Wagai R, Mayer L M, Kitayama K et al., 2008. Climate and parent material controls on organic matter storage in surface soils: A three-pool, density-separation approach. Geoderma, 147: 23–33. doi: 10.1016/j.geoderma.2008.07.010

    Article  Google Scholar 

  • Wan Y, Lin E, Xiong W et al., 2011. Modeling the impact of climate change on soil organic carbon stock in upland soils in the 21st century in China. Agriculture, Ecosystems & Environment, 141: 23–31. doi:10.1016/j.agee.2011.02.004

    Article  Google Scholar 

  • Wang D D, Shi X Z, Lu X X et al., 2010a. Response of soil organic carbon spatial variability to the expansion of scale in the uplands of Northeast China. Geoderma, 154: 302–310. doi: 10.1016/j.geoderma.2009.10.018

    Article  Google Scholar 

  • Wang D D, Shi X Z, Wang H J et al., 2010b. Scale effect of climate and texture on soil organic carbon in the uplands of Northeast China. Pedosphere, 20: 525–535. doi: 10.1016/S1002-0160(10)60042-2

    Article  Google Scholar 

  • Wang D D, Shi X Z, Wang H J et al., 2010c. Scale effect of Climate on soil organic carbon in the uplands of Northeast China. Journal of Soils and Sediments, 10: 1007–1017. doi: 10.1007/s11368-009-0129-2

    Article  Google Scholar 

  • Wang G, Zhang L, Zhuang Q et al., 2016. Quantification of the soil organic carbon balance in the Tai-Lake paddy soils of China. Soil and Tillage Research, 155: 95–106. doi: 10.1016/j.still.2015.08.003

    Article  Google Scholar 

  • Wang M Y, Shi X Z, Yu D S et al., 2013. Regional differences in the effect of climate and soil texture on soil organic carbon. Pedosphere, 23: 799–807. doi: 10.1016/S1002-0160(13)60071-5

    Article  Google Scholar 

  • Wang S Q, Yu G R, Zhao Q J et al., 2005. Spatial characteristics of soil organic carbon storage in China’s croplands. Pedosphere, 15: 417–423.

    Google Scholar 

  • Wang Z, Liu G B, Xu M X et al., 2012. Temporal and spatial variations in soil organic carbon sequestration following revegetation in the hilly Loess Plateau, China. Catena, 99: 26–33. doi: 10.1016/j.catena.2012.07.003

    Article  Google Scholar 

  • Wiesmeier M, Hübner R, Barthold F et al., 2013. Amount, distribution and driving factors of soil organic carbon and nitrogen in cropland and grassland soils of southeast Germany (Bavaria). Agriculture, Ecosystems & Environment, 176: 39–52. doi: 10.1016/j.agee.2013.05.012

    Article  Google Scholar 

  • Xiong X, Grunwald S, Myers D B et al., 2014. Interaction effects of climate and land use/land cover change on soil organic carbon sequestration. Science of the Total Environment, 493: 974–982. doi: 10.1016/j.scitotenv.2014.06.088

    Article  Google Scholar 

  • Xu S, Shi X, Zhao Y et al., 2011. Carbon sequestration potential of recommended management practices for paddy soils of China, 1980–2050. Geoderma, 166: 206–213. doi: 10.1016/j.geoderma.2011.08.002

    Article  Google Scholar 

  • Xu Xinwang, Pan Genxing, 2005. The progress in the carbon cycle researches in paddy soil in China. Ecology and Environment, 14: 961–966. (in Chinese)

    Google Scholar 

  • Zeng X, Zhang W, Shen H et al., 2014. Soil respiration response in different vegetation types at Mount Taihang, China. Catena, 116: 78–85. doi: 10.1016/j.catena.2013.12.018

    Article  Google Scholar 

  • Zhang Jiacheng, 1991. Climate of China. Beijing: China Meteorological Press. (in Chinese)

    Google Scholar 

  • Zhao Y, Shi X, Weindorf D C et al., 2006. Map scale effects on soil organic carbon stock estimation in North China. Soil Science Society of American Journal, 70: 1377–1386. doi: 10.2136/sssaj2004.0165

    Article  Google Scholar 

  • Zheng G, Jiao C, Zhou S et al., 2016. Analysis of soil chronosequence studies using reflectance spectroscopy. International Journal of Remote Sensing, 37: 1881–1901. doi: 10.1080/01431161.2016.1163751

    Article  Google Scholar 

  • Zheng Z M, Yu G R, Fu Y L et al., 2009. Temperature sensitivity of soil respiration is affected by prevailing climatic conditions and soil organic carbon content: A trans-China based case study. Soil Biology and Biochemistry, 41: 1531–1540. doi: 10.1016/j.soilbio.2009.04.013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuezheng Shi.

Additional information

Foundation item: Under the auspices of National Natural Science Foundation of China (No. 41301242, 41201213), Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA05050509)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Yan, Y., Li, X. et al. Influence of climate on soil organic carbon in Chinese paddy soils. Chin. Geogr. Sci. 27, 351–361 (2017). https://doi.org/10.1007/s11769-017-0868-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-017-0868-8

Keywords