Reconstructing environmental changes of a coastal lagoon with coral reefs in southeastern Hainan Island

Abstract

Coastal lagoons with small catchment basins are highly sensitive to natural processes and anthropogenic activities. To figure out the environmental changes of a coastal lagoon and its contribution to carbon burial, two sediment cores were collected in Xincun Lagoon, southeastern Hainan Island and 210Pb activities, grain size parameters, total organic carbon (TOC), total nitrogen (TN), total inorganic carbon (TIC) and stable carbon isotopes (δ13C) were measured. The results show that in 1770–1815, the decreasing water exchange capacity with outer open water, probably caused by the shifting and narrowing of the tidal inlet, not only diminished the currents and fined the sediments in the lagoon, but also reduced the organic matter of marine sources. From 1815 to 1950, the sedimentary environment of Xincun Lagoon was frequently influenced by storm events. These extreme events resulted in the high fluctuation of sediment grain size and sorting, as well as the great variation in contributions of terrestrial (higher plants, soils) and marine sources (phytoplankton, algae, seagrass). The extremely high content of TIC, compared to TOC before 1950 could be attributed to the large-scale coverage of coral reefs. However, with the boost of seawater aquaculture activities after 1970, the health growth of coral species was severely threatened, and corresponding production and inorganic carbon burial flux reduced. The apparent enhanced inorganic carbon burial rate after 1990 might result from the concomitant carbonate debris produced by seawater aquaculture. This result is important for local government long-term coastal management and environmental planning.

This is a preview of subscription content, log in to check access.

References

  1. Alongi D M, Pfitzner J, Trott L A, 2006. Deposition and cycling of carbon and nitrogen in carbonate mud of the lagoons of Arlington and Sudbury Reefs, Great Barrier Reef. Coral Reefs, 25(1): 123–143. doi: 10.1007/s00338-005-0069-2

    Article  Google Scholar 

  2. Alongi D M, Trott L A, Pfitzner J, 2007. Deposition, mineralization, and storage of carbon and nitrogen in sediments of the far northern and northern Great Barrier Reef shelf. Continental Shelf Research, 27(20): 2595–2622. doi: 10.1016/j.csr.2007. 07.002

    Article  Google Scholar 

  3. Anthony E J, Blivi A B, 1999. Morphosedimentary evolution of a delta-sourced, drift-aligned sand barrier-lagoon complex, western Bight of Benin. Marine Geology, 158(1–4): 161–176. doi: 10.1016/S0025-3227(98)00170-4

    Article  Google Scholar 

  4. Appleby P G, Oldfield F, 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena, 5(1): 1–8. doi: 10.1016/S0341-8162(78) 80002-2

    Article  Google Scholar 

  5. Appleby P G, Oldfield F, 1992. Applications of 210Pb to sedimentation studies. In: Ivanovich M and Harmon R S (eds.). Uranium-series Disequilibrium. Applications to Earth, Marine and Environmental Sciences. Second ed. Oxford Science, 731–778.

    Google Scholar 

  6. Bao H Y, Wu Y, Unger D et al., 2013. Impact of the conversion of mangroves into aquaculture ponds on the sedimentary organic matter composition in a tidal flat estuary (Hainan Island, China). Continental Shelf Research, 57: 82–91. doi: 10.1016/j.csr.2012.06.016

    Article  Google Scholar 

  7. Bray T F, Carter C H, 1992. Physical processes and sedimentary record of a modern, transgressive, lacustrine barrier island. Marine Geology, 105(1): 155–168. doi: 10.1016/0025-3227(92)90187-M

    Article  Google Scholar 

  8. Brevik E C, Homburg J A, 2004. A 5000 year record of carbon sequestration from a coastal lagoon and wetland complex, Southern California, USA. Catena, 57(3): 221–232. doi: http://dx.doi.org/10.1016/j.catena.2003.12.001

    Article  Google Scholar 

  9. Briand M J, Bonnet X, Goiran C et al., 2015. Major sources of organic matter in a complex coral reef lagoon: Identification from isotopic signatures (δ13C and δ15N). PloS One, 10(7): e0131555. doi: 0.1371/journal.pone.0131555

    Article  Google Scholar 

  10. Bruno J F, Petes L E, Drew Harvell C et al., 2003. Nutrient enrichment can increase the severity of coral diseases. Ecology Letters, 6(12): 1056–1061. doi: 10.1046/j.1461-0248.2003. 00544.x

    Article  Google Scholar 

  11. Chen Shiquan, Wang Daoru, Wu Zhongjie et al., 2015. Discussion of the change trend of the seagrass beds in the east coast of Hainan Island in nearly a decade. Marine Environmental Science, 3499(1): 48–53. (in Chinese)

    Google Scholar 

  12. Chinese Compilation Committee of China’s Coast Embayments. China’s Coast Embayments, 1999. Hainan Coast Embayments. Vol. 11. Beijing: China Ocean Press, 1–426. (in Chinese)

    Google Scholar 

  13. Devlin M J, Brodie J, 2005. Terrestrial discharge into the Great Barrier Reef Lagoon: nutrient behavior in coastal waters. Marine Pollution Bulletin, 51(1–4): 9–22, doi: http://dx.doi.org/10.1016/j.marpolbul.2004.10.037

    Article  Google Scholar 

  14. Fabricius K E, De′ath G, Humphrey C et al., 2013. Intra-annual variation in turbidity in response to terrestrial runoff on near-shore coral reefs of the Great Barrier Reef. Estuarine, Coastal and Shelf Science, 116: 57–65. doi: 10.1016/j.ecss. 2012.03.010

    Article  Google Scholar 

  15. Fiege D, Neumann V, Li J, 1994. Observations on coral reefs of Hainan island, South China Sea. Marine Pollution Bulletin, 29(1): 84–89. doi: 10.1016/0025-326X(94)90430-8

    Article  Google Scholar 

  16. Flynn W W, 1968. Determination of low levels of polonium-210 in environmental materials. Analytica Chimica Acta, 43: 221–227. doi: 10.1016/S0003-2670(00)89210-7

    Article  Google Scholar 

  17. Gao S, Jia J J, 2004. Sediment and carbon accumulation in a small tidal basin: Yuehu, Shandong Peninsula, China. Regional Environmental Change, 4(1): 63–69. doi: 10.1007/s10113-003-0064-5

    Article  Google Scholar 

  18. Ge Chendong, 2006. Changes in recent sedimentary environment of the Wanquan River estuary, Hainan Island, China and their anthropogenic impacts-comparison with sediment records in Hatzic Lake, Lower Fraser River, Canada. Nanjing: The Doctoral Dissertation of Nanjing University, 1–158. (in Chinese)

    Google Scholar 

  19. Ge C D, Slaymaker O, Pedersen T F, 2003. Change in the sedimentary environment of Wanquan River Estuary, Hainan Island, China. Chinese Science Bulletin, 48(21): 2357–2361. doi: 10.1360/03wd0152

    Article  Google Scholar 

  20. Gong W P, Shen J, Jia J J, 2008. The impact of human activities on the flushing properties of a semi-enclosed lagoon: Xiaohai, Hainan, China. Marine Environmental Research, 65(1): 62–76. doi: 10.1016/j.marenvres.2007.08.001

    Article  Google Scholar 

  21. Gong Wenping, Wang Yaping, Wang Daoru et al., 2008. Hydrodynamics under combined action of wave and tide and its implication for the sediment dynamics in Xincun Tidal Inlet, Hainan. Journal of Marine Sciences, 26(2): 1–12. (in Chinese)

    Google Scholar 

  22. Gonneea M E, Paytan A, Herrera-Silveira J A, 2004. Tracing organic matter sources and carbon burial in mangrove sediments over the past 160 years. Estuarine, Coastal and Shelf Science, 61(2): 21–1227. doi: 10.1016/j.ecss.2004.04.015

    Article  Google Scholar 

  23. Hainan Provincial Bureau of Statistics, 1986–2013. Hainan Statistical Year Book. Beijing: China Statistical Publishing House. (in Chinese)

    Google Scholar 

  24. Hansen J A, Klumpp D W, Alongi D M et al., 1992. Detrital pathways in a coral reef lagoon II Detritus deposition, benthic microbial biomass and production. Marine Biology, 113(3): 363–372.

    Article  Google Scholar 

  25. Hauxwell J, Cebrián J, Furlong C et al., 2001. Macroalgal canopies contribute to eelgrass (Zostera marina) decline in temperate estuarine ecosystems. Ecology, 82(4): 1007–1022. doi: 10.2307/2679899

    Article  Google Scholar 

  26. Herbeck L S, Unger D, Krumme U et al., 2011. Typhoon-induced precipitation impact on nutrient and suspended matter dynamics of a tropical estuary affected by human activities in Hainan, China. Estuarine, Coastal and Shelf Science, 93(4): 375–388, doi: 10.1016/j.ecss.2011.05.004

    Article  Google Scholar 

  27. Herbeck L S, Unger D, Wu Y et al., 2013. Effluent, nutrient and organic matter export from shrimp and fish ponds causing eutrophication in coastal and back-reef waters of NE Hainan, tropical China. Continental Shelf Research, 57: 92–104. doi: 10.1016/j.csr.2012.05.006

    Article  Google Scholar 

  28. Houser C, Hapke C, Hamilton S, 2008. Controls on coastal dune morphology, shoreline erosion and barrier island response to extreme storms. Geomorphology, 100(3): 223–240. doi: 10.1016/j.geomorph.2007.12.007

    Article  Google Scholar 

  29. Hu J, Peng P, Jia G et al., 2006. Distribution and sources of organic carbon, nitrogen and their isotopes in sediments of the subtropical Pearl River estuary and adjacent shelf, Southern China. Marine Chemistry, 98(2): 274–285. doi: 10.1016/j.marchem.2005.03.008

    Article  Google Scholar 

  30. Hughes T P, 1994. Catastrophes, phase-shifts, and large-scale degradation of a Caribbean coral reef. Science, 265: 1547–1551. doi: 10.1126/science.265.5178.1547

    Article  Google Scholar 

  31. Jackson J B C, Kirby M X, Berger W H et al., 2001. Historical overfishing and the recent collapse of coastal ecosystems, Science, 293(5530): 629–638.

    Article  Google Scholar 

  32. Jia J J, Gao S, Xue Y C, 2003. Sediment dynamic processes of the Yuehu inlet system, Shandong Peninsula, China. Estuarine, Coastal and Shelf Science, 57(5): 783–801. doi: 10.1016/S0272-7714(02)00406-7

    Article  Google Scholar 

  33. Jia J J, Gao J H, Liu Y F et al., 2012. Environmental changes in Shamei Lagoon, Hainan Island, China: interactions between natural processes and human activities. Journal of Asian Earth Sciences, 52(30): 158–168. doi: 10.1016/j.jseaes.2012.03.008

    Article  Google Scholar 

  34. Jiang Y F, Ling J, Wang Y S et al., 2015. Cultivation-dependent analysis of the microbial diversity associated with the seagrass meadows in Xincun Bay, South China Sea. Ecotoxicology, 24(7): 1540–1547. doi: 10.1007/s10646-015-1519-4

    Article  Google Scholar 

  35. Koop K, Larkum A W D, 1987. Deposition of organic material in a coral reef lagoon, One Tree Island, Great Barrier Reef. Estuarine, Coastal and Shelf Science, 25(1): 1–9. doi: 10.1016/0272-7714(87)90021-7

    Article  Google Scholar 

  36. Lambert W J, Aharon P, Rodriguez A B, 2008. Catastrophic hurricane history revealed by organic geochemical proxies in coastal lake sediments: a case study of Lake Shelby, Alabama (USA). Journal of Paleolimnology, 39(1): 117–131. doi: 10.1007/s10933-007-9101-6

    Article  Google Scholar 

  37. Leroy S A G, Marret F, Giralt S et al., 2006. Natural and anthropogenic rapid changes in the Kara-Bogaz Gol over the last two centuries reconstructed from palynological analyses and a comparison to instrumental records. Quaternary International, 150(1): 52–70. doi: 10.1016/j.quaint.2006.01.007

    Article  Google Scholar 

  38. Li X G, Yuan H M, Li N et al., 2008. Organic carbon source and burial during the past one hundred years in Jiaozhou Bay, North China. Journal of Environmental Science, 20: 55–1557. doi: 10.1016/S1001-0742(08)62093-8

    Google Scholar 

  39. Li Qiaoxiang, Huang Wenguo, Zhou Yongzhao, 2010. A preliminary study of eutrophication and occurrence of red tides in Xincun Harbour. Transactions of Oceanology and Limnology, (4): 9–15. (in Chinese)

    Google Scholar 

  40. Li R H, Liu S M, Li Y W et al., 2014. Nutrient dynamics in tropical rivers, lagoons, and coastal ecosystems of eastern Hainan Island, South China Sea. Biogeosciences, 11(2): 481–506. doi: 10.5194/bg-11-481-2014

    Article  Google Scholar 

  41. Linshui County Chronicles Compilation Committee, 2007. Lingshui County Gazetteer. Beijing: Fangzhi Press, 1–992. (in Chinese)

    Google Scholar 

  42. Liu, S M, Li R H, Zhang G L et al., 2011. The impact of anthropogenic activities on nutrient dynamics in the tropical Wenchanghe and Wenjiaohe Estuary and Lagoon system in East Hainan, China. Marine Chemistry, 125(1–4): 49–68. doi: http://dx.doi.org/10.1016/j.marchem.2011.02.003

    Article  Google Scholar 

  43. Liu X J, Ge C D, 2012. Spatial and temporal variations of sedimented organic matter in Xiaohai Lagoon, Hainan Island. Acta Oceanologica Sinica, 31(3): 74–86. Doi: 10.1007/813131-012-0208-x

    Article  Google Scholar 

  44. Maanan M, Saddik M, Maanan M et al., 2014. Environmental and ecological risk assessment of heavy metals in sediments of nador lagoon, morocco. Ecological Indicators, 48: 616–626. doi: 10.1016/j.ecolind.2014.09.034

    Article  Google Scholar 

  45. McManus J, 1988. Grain size determination and interpretation. In: Tucker M (ed.). Techniques in Sedimentology. Oxford: Black-well, 63–85.

    Google Scholar 

  46. Meyers P A, 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry, 27(5): 213–250. doi: 10.1016/S0146-6380(97)00049-1

    Article  Google Scholar 

  47. Moncreiff C A, Sullivan M J, 2001. Trophic importance of epiphytic algae in subtropical seagrass beds: Evidence from multiple stable isotope analyses, Marine ecology. Progress Series, 215: 93–106. doi: 10.3354/meps215093

    Article  Google Scholar 

  48. Miyajima T, Hori M, Hamaguchi M et al., 2015. Geographic variability in organic carbon stock and accumulation rate in sediments of East and Southeast Asian seagrass meadows. Global Biogeochemical Cycles, 29(4): 397–415. doi: 10.1002/2014GB00497

    Article  Google Scholar 

  49. Ryan K E, Walsh J P, Corbett D R et al., 2008. A record of recent change in terrestrial sedimentation in a coral-reef environment, La Parguera, Puerto Rico: A response to coastal development. Marine Pollution Bulletin, 56(6): 1177–1183. doi: 10.1016/j.marpolbul.2008.02.017

    Article  Google Scholar 

  50. Sabatier P, Dezileau L, Condomines M et al., 2008. Reconstruction of paleostorm events in a coastal lagoon (Hérault, South of France). Marine Geology, 251(3–4): 224–232. doi: 10.1016/j.margeo.2008.03.001

    Article  Google Scholar 

  51. Sfriso A, Pavoni B, Marcomini A et al., 1992. Macroalgae, nutrient cycles, and pollutants in the Lagoon of Venice. Estuaries, 15(4): 517–528.

    Article  Google Scholar 

  52. Storms J E A, Weltje G J, Terra G J et al., 2008. Coastal dynamics under conditions of rapid sea-level rise: late Pleistocene to Early Holocene evolution of barrier-lagoon systems on the northern Adriatic shelf (Italy). Quaternary Science Reviews, 27(11–12): 1107–1123. doi: 10.1016/j.quascirev. 2008.02.009

    Article  Google Scholar 

  53. Song Chaojing, 1984. Geomorphology and the tidal inlets in the East Coast of Hainan Island. Studia Marine Science of South China Sea (The 5th Volume). Bejing: Science Press, 31–50. (in Chinese)

    Google Scholar 

  54. Shultz D J, Calder J A, 1976. Organic carbon 13C12C variations in estuarine sediments. Geochimica et Cosmochimica Acta, 40(4): 381–385. doi: 10.1016/0016-7037(76)90002-8

    Article  Google Scholar 

  55. Unger D, Herbeck L S, Li M et al., 2013. Sources, transformation and fate of particulate amino acids and hexosamines under varying hydrological regimes in the tropical Wenchang/Wenjiao Rivers and Estuary, Hainan, China. Continental Shelf Research, 57: 44–58. doi: 10.1016/j.csr.2012.02.014

    Article  Google Scholar 

  56. Wang Ying, Peter M I, Zhu Dakui et al., 2001. Coastal plain evolution in southern Hainan Island, China. Chinese Science Bulletin, 46(1): 90–96. doi: 10.1007/BF03187244

    Article  Google Scholar 

  57. Wu S, Zhang W, 2012. Current status, crisis and conservation of coral reef ecosystems in China. Proceedings of the International Academy of Ecology and Environmental Sciences, 2(1): 1–11.

    Google Scholar 

  58. Yamamuro M, 2000. Chemical tracers of sediment organic matter origins in two coastal lagoons. Journal of Marine Systems, 26(2): 127–134. doi: 10.1016/S0924-7963(00)00049-X

    Article  Google Scholar 

  59. Yang D, Yang C, 2009. Detection of seagrass distribution changes from 1991 to 2006 in Xincun Bay, Hainan, with satellite remote sensing. Sensors, 9(2): 830–844. doi: 10.3390/s9020 0830

    Article  Google Scholar 

  60. Yang H, Yu K, Zhao M et al., 2015. Impact on the coral reefs at Yongle Atoll, Xisha Islands, South China Sea from a strong typhoon direct sweep: Wutip, September 2013. Journal of Asian Earth Sciences, 114: 457–466. doi: 10.1016/j.jseaes. 2015.04.009

    Article  Google Scholar 

  61. Yang Yang, Gao Shu, Zhou Liang et al., 2016. Analysis of tides and P-A relationships of Xincun and Li-An Lagoons, Southeastern Hainan Island. Quaternary Sciences, 36(1): 163–172. (in Chinese)

    Google Scholar 

  62. Zhang Jiangyong, Zhou Yang, Chen Fang et al., 2015. Deposition of carbonate contents and the abundances of major carbonate components in surface sediment from the northern South China Sea. Quaternary Sciences, 35(6): 1366–1382. (in Chinese)

    Google Scholar 

  63. Zhang Qiaomin, 1987. On P-A relationships of tidal inlets along the South China Coast. Tropical Oceanology, 6(2): 10–18. (in Chinese)

    Google Scholar 

  64. Zhao Huanting, Zhang Qiaomin, Song Chaojing et al., 1999. Geomorphology and Environment of the South China Coast and South China Sea Islands. Beijing: Science Press, 1–528. (in Chinese)

    Google Scholar 

  65. Zhou Liang, Gao Shu, Yang Yang et al., 2015. Comparison of paleostorm events between sedimentary and historical archives: A 350 year record from southeastern Hainan Island coastal embayments. Acta Oceanologica Sinica, 37(9): 84–94. (in Chinese)

    Google Scholar 

  66. Zhou L Y, Liu J, Saito Y et al., 2016. Modern sediment characteristics and accumulation rates from the delta front to prodelta of the Yellow River (Huanghe). Geo-Marine Letters, 36(4): 247–258. doi: 10.1007/s00367-016-0442-x

    Article  Google Scholar 

  67. Zou Renlin, Song Shanwen, Ma Jianghu, 1975. Scleractinian Corals in the Hainan Island. Beijing: Science Press, 1–66. (in Chinese)

    Google Scholar 

Download references

Acknowledgement

We are grateful to Professor Wang Yaping for his help with the arrangement of laboratory analysis, and Professor Ge Chendong, Associate Professor Yin Yong, Dr. Li Jin and the laboratory colleagues for their help with the field work and useful suggestions. Two anonymous reviewers are thanked for their helpful comments on the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shu Gao.

Additional information

Foundation item: Under the auspices of National Natural Science Foundation of China (No. 41530962)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Gao, S., Gao, J. et al. Reconstructing environmental changes of a coastal lagoon with coral reefs in southeastern Hainan Island. Chin. Geogr. Sci. 27, 402–414 (2017). https://doi.org/10.1007/s11769-017-0867-9

Download citation

Keywords

  • environmental change
  • carbon burial flux
  • organic matter
  • coral reef
  • human activity
  • coastal lagoon
  • southeastern Hainan Island