Bach L H, Grytnes J A, Halvorsen R et al., 2010. Tree influence on soil microbial community structure. Soil Biology and Biochemistry, 42(11): 1934–1943. doi: 10.1016/j.soilbio.2010.07.002
Article
Google Scholar
Bai Junhong. 2003. Biogeochemical processes of nitrogen in marsh soils from Xianghai wetland, China. Changchun, China: PhD Thesis, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences. (in Chinese)
Google Scholar
Bai J H, Yang H O, Deng W et al., 2005. Spatial distribution characteristics of organic matter and total nitrogen of marsh soils in river marginal wetlands. Geoderma, 124(1–2): 181–192. doi: 10.1016/j.gE.ovataderma.2004.04.012
Article
Google Scholar
Balasooriya W K, Denef K, Peters J et al., 2008. Vegetation composition and soil microbial community structural changes along a wetland hydrological gradient. Hydrology and Earth System Sciences, 12(1): 277–291. doi: 10.5194/hess-12-277-2008
Article
Google Scholar
Bardgett R D, Shine A, 1999. Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biology and Biochemistry, 31(2): 317–321. doi: 10.1016/S0038-0717(98)00121-7
Article
Google Scholar
Bruland G L, Richardson C J, 2004. Wetland soils: Hydrologic gradients and topsoil additions affect soil properties of virginiacerated wetlands. Soil Science Society of America Journal, 68(6): 2069–2077. doi: 10.2136/sssaj2004.2069
Article
Google Scholar
Colin W B, Shinichi A, Francisco C et al., 2015. Plant nitrogen uptake drives rhizosphere bacterial community assembly during plant growth. Soil Biology and Biochemistry, 85:1701–82. doi: 10.1016/j.soilbio.2015.03.006
Google Scholar
Djukic I, Zehetner F, Mentler A et al., 2010. Microbial community composition and activity in different Alpine vegetation zones. Soil Biology and Biochemistry, 42(2): 155–161. doi: 10.1016/j.soilbio.2009.10.006
Article
Google Scholar
Frostegard A, Tunlid A, Baath E, 1991. Microbial biomass measured as total lipid phosphate in soils of different organic content. Journal of Microbiological Methods, 14(3): 151–163. doi: 10.1016/0167-7012(91)90018-L
Article
Google Scholar
Gutknecht J L M, Goodman R M, Balser T C, 2006. Linking soilprocesses and microbial ecology in freshwater wetland ecosystems. Plant Soil, 289(1–2): 17–34. doi: 10.1007/s11104-006-9105-4
Article
Google Scholar
Han X M, Wang R Q, Liu J et al., 2007. Effects of vegetation type on soil microbial community structure and catabolic diversity assessed by polyphasic methods in North China. Journal of Environmental Sciences, 19(10): 1228–1234. doi: 10.1016/S1001-0742(07)60200-9.
Article
Google Scholar
Houlahan J E, Keddy P A, Makkay K et al., 2006. The effects of adjacent land use on wetland species richness and community composition. Wetlands, 26(1): 79–96. doi: 10.1672/0277-5212(2006)[97:JE.OVATAALU]2.0.CO;2
Article
Google Scholar
Ingham E R, Wilson M V, 1999. The mycorrhizal colonization of six wetland plant species at sites differing in land use history. Mycorrhiza, 9(4): 233–235. doi: 10.1007/s005720050272
Article
Google Scholar
Jaatinen K, Fritze H, Laine J et al., 2007. Effects of short- and long-term water-level drawdown on the populations and activity of aerobic decomposers in a boreal peatland. Global Change Biology, 13(2): 491–510. doi: 10.111/j.1365-2486.2006.01312.x
Article
Google Scholar
Jaatinen K, Tuittila E S, Laine J et al., 2005. Methane-oxidizing bacteria (MOB) in a Finnish raised mire complex: Effects of site fertility and drainage. Microbial Ecology, 50(3): 429–439. doi: 10.1007/s00248-004-0219-z
Article
Google Scholar
Jackson M B, Armstrong W, 1999. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biology, 1(3): 274–287. doi: 10.1111/j.1438-8677.1999.tb00253.x
Article
Google Scholar
James F D, Nicolas C, Hélène F et al., 2004. Sensing and signalling during plant flooding. Plant Physiology and Biochemistry, 42(4): 273–282. doi: 10.1016/j.plaphy.2004.02.003
Article
Google Scholar
Jing J Y, Martijn B T, Van der Putten W H, 2015. Interspecific competition of early successional plant species in ex-arable fields as influenced by plant–soil feedback. Basic and Applied and Ecology, 16(2): 112–119. doi: 10.1016/j.baae.2015.01.001
Article
Google Scholar
Kardol P, Bezemer T M, Van der Putten W H, 2006. Temporal variation in plant-soil feedback controls succession. Ecology Letters, 9(9): 1080–1088. doi: 10.1111/j.1461-0248.2006.00953.x
Article
Google Scholar
Kardol P, De Deyn G B, Laliberte E et al., 2013. Biotic plant–soil feedbacks across temporal scales. Journal of Ecology, 101(2): 309–315. doi: 10.1111/1365-2745.12046
Article
Google Scholar
Knops J M H, Bradley K L, Wedin D A, 2002. Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecology Letters, 5(3): 454–466. doi: 10.1111/j.1461-0248.2008.01209.x
Article
Google Scholar
Kulmatiski A, Beard K H, Stevens J R et al., 2008. Plant–soil feedbacks: a meta-analytical review. Ecology letters, 11(9): 980–912. doi: 10.1111/j.1461-0248.2008.01209.x
Article
Google Scholar
Lanchlan H, Fraser Tara E Miletti, 2008. Effects of minor water depth treatments on competitive effect and response of eight wetland plants. Plant Ecology, 195}(1}): 33–43. doi: 10.1007/s11258-007-9296
Liu Guangsong, 1996. Analysis of Soil Physical and Chemical Properties and Description of Soil Profiles. Bejing: Chinese Standard Press.
Google Scholar
Lou Y Y, Wang G P, Lu X G et al., 2013. Zonation of plant cover and environmental factors in wetlands of the Sanjiang Plain, northeast China. Nordic Journal of Botany, 31(6): 748–756. doi: 10.1111/j.1756-1051.2013.01721.x
Article
Google Scholar
Massaccesi L, Bardgett R D, Agnelli A et al., 2015. Impact of plant species evenness, dominant species identity and spatial arrangement on the structure and functioning of soil microbial communities in a model grassland. Oecologia, 177(3): 747–759. doi: 10.1007/s00442-014-3135-z
Article
Google Scholar
Miller S P, Bever J D, 1999. Distribution of arbuscular mycorrhizal fungi in stands of the wetland grass Panicum hemitomon along a wide hydrologic gradient. Oecologia, 119(4): 586–592. doi: 10.1007/s004420050823
Article
Google Scholar
Mitchell R J, Hester A J, Campbell C D et al., 2012. Explaining the variation in the soil microbial community: do vegetation composition and soil chemistry explain the same or different parts of the microbial variation? Plant Soil, 351(1–2): 355–362. doi: 10.1007/s11104-011-0968-7
Article
Google Scholar
Moche M, Gutknecht J, Schulz E et al., 2015. Monthly dynamics of microbial community structure and their controlling factors in three floodplain soils. Soil Biology and Biochemistry, 90: 169–178. doi: 10.1016/j.soilbio.2015.07.006
Article
Google Scholar
Reddy K R, Patrick J, 1975. Effect of alternate aerobic and anaerobic conditions on redox potential, organic matter decomposition and nitrogen loss in a flooded soil. Soil Biology and Biochemistry, 7(2): 87–94. doi: 10.1016/0038-0717(75)90004-8
Article
Google Scholar
Reynolds H L, Packer A, Bever J D et al., 2003. Grassroots exology: plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology Letters, 84(9): 2281–2291. doi: http://dx.doi.org/10.1890/02-0298
Article
Google Scholar
Rickerl D H, Sancho S O, Anath S, 1994. Vesicular-arbuscular endomycorrhizal colonization of wetland plants. Journal of Environmental Quality, 23(5): 913–916. doi: 10.2134/jeq1994.00472425002300050010x
Article
Google Scholar
Schlatter D C, Bakker M G, Bradeen J M et al., 2015. Plant community richness and microbial interactions structure bacterial community in soil. Ecology, 96(1): 134–142. doi: 10.1890/13-1648.1
Article
Google Scholar
Van Eck W H J M, Van De Steeg H M, Blom C P W P M et al., 2004. Is tolerance to summer flooding correlated with distribution patterns in river floodplains? A comparative study of 20 terrestrial grassland species. Okios, 107(2): 393–405. doi: 10.1111/j.0030-1299.2004.13083.x
Article
Google Scholar
Wang X, Van Nostrand J D, Deng Y et al., 2015. Scale-dependent effects of climate and geographic distance on bacterial diversity patterns across northern China's grasslands. FEMS Microbiology Ecology, 91(12): 1–9. doi: http://dx.doi.org/10.1093/femsec/fiv133
Article
Google Scholar
Wardle D A, Bardgett R D, Klironomos J N et al., 2004. Ecological linkages between aboveground and belowground biota. Science, 34(5677): 1620–1633. doi: 10.1126/science.1094875
Google Scholar
Weand M P, Arthur M A, Lovett G M et al., 2010. Effects of tree species and N additions on forest floor microbial communities and extracellular enzyme activities. Soil Biology and Biochemistry, 42(12): 2161–2173. doi: 10.1016/j.soilbio.2010.08.012
Article
Google Scholar
Wyatt H H, Curtis J R, Rytas V et al., 2008. Environmental and anthropogenic controls over bacterial communities in wetland soils. Proceedings of the National Academy of Science of the United States of America, 105(46): 17842–17847. doi: 10.1073/pnas.0808254105
Article
Google Scholar
Yang Guisheng, Song Changchun, Wang Li et al., 2010. Influence of water level gradient on marsh soil microbial activity of Calamagrostis angustifolia. Environment Science, 31: 444–449. (in Chinese)
Google Scholar
Zhao J, Wang X L, Shao Y H et al., 2011. Effects of vegetation removal on soil properties and decomposer organisms. Soil Biology and Biochemistry, 43(5): 954–960. doi: 10.1016/j.soilbio.2011.01.010
Article
Google Scholar
Zedler J B, Kercher S, 2005. Wetland resources: status, trends, ecosystem services, and restorability. Annual Review of Environment and Resources, 30: 39–74. doi: 10.1146/annurev.energy.30.050504.144248
Article
Google Scholar