Skip to main content

Effects of wetland vegetation on soil microbial composition: A case study in Tumen River Basin, Northeast China

Abstract

Hydrology plays a dominant role in wetland plant distribution and microbial composition, but few studies explicitly attempted to relate the linkage between wetland vegetation and microbial community. The present study consisted of five wetland plant communities along three adjacent flood gradients zones (zone 1 dominated by Carex appendiculat, zone 2 dominated by Eleocharis ovate, and zone 3 dominated by Phragmites australis/Bidens pilosa/Calamagrostis angustifolia, which formed separate, monoculture patches). Gram negative and arbuscular mycorrhizal fungal phospholipid fatty acid (PLFA) are more abundant in the site with short flooding period (zone 3) than in the site with long flooding period (zone 1), and they are also different in the P. australis, B. spilosa and C. angustifolia of zone 3. Principle Component Analysis (PCA) showed that the flooding period could explain 92.4% of variance in microbial composition. Redundancy Analysis (RDA) showed that available nitrogen (AN), total nitrogen (TN) and soil organic matter (SOM) could explain the 79.5% of variance in microbial composition among E. ovata, P. australis, B. pilosa and C. angustifolia. Results demonstrated that flooding period was the main factor in driving the microbial composition and plant-derived resources could influence soil microbial composition in the seasonally flooded zones.

This is a preview of subscription content, access via your institution.

References

  • Bach L H, Grytnes J A, Halvorsen R et al., 2010. Tree influence on soil microbial community structure. Soil Biology and Biochemistry, 42(11): 1934–1943. doi: 10.1016/j.soilbio.2010.07.002

    Article  Google Scholar 

  • Bai Junhong. 2003. Biogeochemical processes of nitrogen in marsh soils from Xianghai wetland, China. Changchun, China: PhD Thesis, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences. (in Chinese)

    Google Scholar 

  • Bai J H, Yang H O, Deng W et al., 2005. Spatial distribution characteristics of organic matter and total nitrogen of marsh soils in river marginal wetlands. Geoderma, 124(1–2): 181–192. doi: 10.1016/j.gE.ovataderma.2004.04.012

    Article  Google Scholar 

  • Balasooriya W K, Denef K, Peters J et al., 2008. Vegetation composition and soil microbial community structural changes along a wetland hydrological gradient. Hydrology and Earth System Sciences, 12(1): 277–291. doi: 10.5194/hess-12-277-2008

    Article  Google Scholar 

  • Bardgett R D, Shine A, 1999. Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biology and Biochemistry, 31(2): 317–321. doi: 10.1016/S0038-0717(98)00121-7

    Article  Google Scholar 

  • Bruland G L, Richardson C J, 2004. Wetland soils: Hydrologic gradients and topsoil additions affect soil properties of virginiacerated wetlands. Soil Science Society of America Journal, 68(6): 2069–2077. doi: 10.2136/sssaj2004.2069

    Article  Google Scholar 

  • Colin W B, Shinichi A, Francisco C et al., 2015. Plant nitrogen uptake drives rhizosphere bacterial community assembly during plant growth. Soil Biology and Biochemistry, 85:1701–82. doi: 10.1016/j.soilbio.2015.03.006

    Google Scholar 

  • Djukic I, Zehetner F, Mentler A et al., 2010. Microbial community composition and activity in different Alpine vegetation zones. Soil Biology and Biochemistry, 42(2): 155–161. doi: 10.1016/j.soilbio.2009.10.006

    Article  Google Scholar 

  • Frostegard A, Tunlid A, Baath E, 1991. Microbial biomass measured as total lipid phosphate in soils of different organic content. Journal of Microbiological Methods, 14(3): 151–163. doi: 10.1016/0167-7012(91)90018-L

    Article  Google Scholar 

  • Gutknecht J L M, Goodman R M, Balser T C, 2006. Linking soilprocesses and microbial ecology in freshwater wetland ecosystems. Plant Soil, 289(1–2): 17–34. doi: 10.1007/s11104-006-9105-4

    Article  Google Scholar 

  • Han X M, Wang R Q, Liu J et al., 2007. Effects of vegetation type on soil microbial community structure and catabolic diversity assessed by polyphasic methods in North China. Journal of Environmental Sciences, 19(10): 1228–1234. doi: 10.1016/S1001-0742(07)60200-9.

    Article  Google Scholar 

  • Houlahan J E, Keddy P A, Makkay K et al., 2006. The effects of adjacent land use on wetland species richness and community composition. Wetlands, 26(1): 79–96. doi: 10.1672/0277-5212(2006)[97:JE.OVATAALU]2.0.CO;2

    Article  Google Scholar 

  • Ingham E R, Wilson M V, 1999. The mycorrhizal colonization of six wetland plant species at sites differing in land use history. Mycorrhiza, 9(4): 233–235. doi: 10.1007/s005720050272

    Article  Google Scholar 

  • Jaatinen K, Fritze H, Laine J et al., 2007. Effects of short- and long-term water-level drawdown on the populations and activity of aerobic decomposers in a boreal peatland. Global Change Biology, 13(2): 491–510. doi: 10.111/j.1365-2486.2006.01312.x

    Article  Google Scholar 

  • Jaatinen K, Tuittila E S, Laine J et al., 2005. Methane-oxidizing bacteria (MOB) in a Finnish raised mire complex: Effects of site fertility and drainage. Microbial Ecology, 50(3): 429–439. doi: 10.1007/s00248-004-0219-z

    Article  Google Scholar 

  • Jackson M B, Armstrong W, 1999. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biology, 1(3): 274–287. doi: 10.1111/j.1438-8677.1999.tb00253.x

    Article  Google Scholar 

  • James F D, Nicolas C, Hélène F et al., 2004. Sensing and signalling during plant flooding. Plant Physiology and Biochemistry, 42(4): 273–282. doi: 10.1016/j.plaphy.2004.02.003

    Article  Google Scholar 

  • Jing J Y, Martijn B T, Van der Putten W H, 2015. Interspecific competition of early successional plant species in ex-arable fields as influenced by plant–soil feedback. Basic and Applied and Ecology, 16(2): 112–119. doi: 10.1016/j.baae.2015.01.001

    Article  Google Scholar 

  • Kardol P, Bezemer T M, Van der Putten W H, 2006. Temporal variation in plant-soil feedback controls succession. Ecology Letters, 9(9): 1080–1088. doi: 10.1111/j.1461-0248.2006.00953.x

    Article  Google Scholar 

  • Kardol P, De Deyn G B, Laliberte E et al., 2013. Biotic plant–soil feedbacks across temporal scales. Journal of Ecology, 101(2): 309–315. doi: 10.1111/1365-2745.12046

    Article  Google Scholar 

  • Knops J M H, Bradley K L, Wedin D A, 2002. Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecology Letters, 5(3): 454–466. doi: 10.1111/j.1461-0248.2008.01209.x

    Article  Google Scholar 

  • Kulmatiski A, Beard K H, Stevens J R et al., 2008. Plant–soil feedbacks: a meta-analytical review. Ecology letters, 11(9): 980–912. doi: 10.1111/j.1461-0248.2008.01209.x

    Article  Google Scholar 

  • Lanchlan H, Fraser Tara E Miletti, 2008. Effects of minor water depth treatments on competitive effect and response of eight wetland plants. Plant Ecology, 195}(1}): 33–43. doi: 10.1007/s11258-007-9296

  • Liu Guangsong, 1996. Analysis of Soil Physical and Chemical Properties and Description of Soil Profiles. Bejing: Chinese Standard Press.

    Google Scholar 

  • Lou Y Y, Wang G P, Lu X G et al., 2013. Zonation of plant cover and environmental factors in wetlands of the Sanjiang Plain, northeast China. Nordic Journal of Botany, 31(6): 748–756. doi: 10.1111/j.1756-1051.2013.01721.x

    Article  Google Scholar 

  • Massaccesi L, Bardgett R D, Agnelli A et al., 2015. Impact of plant species evenness, dominant species identity and spatial arrangement on the structure and functioning of soil microbial communities in a model grassland. Oecologia, 177(3): 747–759. doi: 10.1007/s00442-014-3135-z

    Article  Google Scholar 

  • Miller S P, Bever J D, 1999. Distribution of arbuscular mycorrhizal fungi in stands of the wetland grass Panicum hemitomon along a wide hydrologic gradient. Oecologia, 119(4): 586–592. doi: 10.1007/s004420050823

    Article  Google Scholar 

  • Mitchell R J, Hester A J, Campbell C D et al., 2012. Explaining the variation in the soil microbial community: do vegetation composition and soil chemistry explain the same or different parts of the microbial variation? Plant Soil, 351(1–2): 355–362. doi: 10.1007/s11104-011-0968-7

    Article  Google Scholar 

  • Moche M, Gutknecht J, Schulz E et al., 2015. Monthly dynamics of microbial community structure and their controlling factors in three floodplain soils. Soil Biology and Biochemistry, 90: 169–178. doi: 10.1016/j.soilbio.2015.07.006

    Article  Google Scholar 

  • Reddy K R, Patrick J, 1975. Effect of alternate aerobic and anaerobic conditions on redox potential, organic matter decomposition and nitrogen loss in a flooded soil. Soil Biology and Biochemistry, 7(2): 87–94. doi: 10.1016/0038-0717(75)90004-8

    Article  Google Scholar 

  • Reynolds H L, Packer A, Bever J D et al., 2003. Grassroots exology: plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology Letters, 84(9): 2281–2291. doi: http://dx.doi.org/10.1890/02-0298

    Article  Google Scholar 

  • Rickerl D H, Sancho S O, Anath S, 1994. Vesicular-arbuscular endomycorrhizal colonization of wetland plants. Journal of Environmental Quality, 23(5): 913–916. doi: 10.2134/jeq1994.00472425002300050010x

    Article  Google Scholar 

  • Schlatter D C, Bakker M G, Bradeen J M et al., 2015. Plant community richness and microbial interactions structure bacterial community in soil. Ecology, 96(1): 134–142. doi: 10.1890/13-1648.1

    Article  Google Scholar 

  • Van Eck W H J M, Van De Steeg H M, Blom C P W P M et al., 2004. Is tolerance to summer flooding correlated with distribution patterns in river floodplains? A comparative study of 20 terrestrial grassland species. Okios, 107(2): 393–405. doi: 10.1111/j.0030-1299.2004.13083.x

    Article  Google Scholar 

  • Wang X, Van Nostrand J D, Deng Y et al., 2015. Scale-dependent effects of climate and geographic distance on bacterial diversity patterns across northern China's grasslands. FEMS Microbiology Ecology, 91(12): 1–9. doi: http://dx.doi.org/10.1093/femsec/fiv133

    Article  Google Scholar 

  • Wardle D A, Bardgett R D, Klironomos J N et al., 2004. Ecological linkages between aboveground and belowground biota. Science, 34(5677): 1620–1633. doi: 10.1126/science.1094875

    Google Scholar 

  • Weand M P, Arthur M A, Lovett G M et al., 2010. Effects of tree species and N additions on forest floor microbial communities and extracellular enzyme activities. Soil Biology and Biochemistry, 42(12): 2161–2173. doi: 10.1016/j.soilbio.2010.08.012

    Article  Google Scholar 

  • Wyatt H H, Curtis J R, Rytas V et al., 2008. Environmental and anthropogenic controls over bacterial communities in wetland soils. Proceedings of the National Academy of Science of the United States of America, 105(46): 17842–17847. doi: 10.1073/pnas.0808254105

    Article  Google Scholar 

  • Yang Guisheng, Song Changchun, Wang Li et al., 2010. Influence of water level gradient on marsh soil microbial activity of Calamagrostis angustifolia. Environment Science, 31: 444–449. (in Chinese)

    Google Scholar 

  • Zhao J, Wang X L, Shao Y H et al., 2011. Effects of vegetation removal on soil properties and decomposer organisms. Soil Biology and Biochemistry, 43(5): 954–960. doi: 10.1016/j.soilbio.2011.01.010

    Article  Google Scholar 

  • Zedler J B, Kercher S, 2005. Wetland resources: status, trends, ecosystem services, and restorability. Annual Review of Environment and Resources, 30: 39–74. doi: 10.1146/annurev.energy.30.050504.144248

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Zheng Junqiang of Institute of Applied Ecology, Chinese Academy of Sciences for the help on the experiment. We also thank Prof. Marinus L. Otte of North Dakota State University, Fargo, ND, USA, for his valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Zhu.

Additional information

Foundation item: Under the auspices of National Natural Science Foundation of China (No. 41361015, 41271106, 41271107, 41501105), Open Fund of the State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University (No. 130028630)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qin, L., Jiang, M., Tian, W. et al. Effects of wetland vegetation on soil microbial composition: A case study in Tumen River Basin, Northeast China. Chin. Geogr. Sci. 27, 239–247 (2017). https://doi.org/10.1007/s11769-017-0853-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-017-0853-2

Keywords

  • plant soil feedback
  • redundancy analysis
  • phospholipid fatty acid (PLFA)
  • soil property
  • flooding period