Skip to main content
Log in

Optimizing hotspot areas for ecological planning and management based on biodiversity and ecosystem services

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

The significance of biodiversity and ecosystem services are gradually recognized by human as an approach towards sustainability, so it is important to understand relationships and congruence between them to support conservation planning, especially in the hotspot areas with a prominent role in conservation. However, the management of most conservation hotspots mainly focused on biodiversity, and rarely concerned with ecosystem services. With the aim of proposing criteria for conservation strategies that contribute to the optimization of biodiversity and ecosystem services, in this study, a Geographic Information System (GIS)-based approach was designed to estimate and map the biodiversity and ecosystem services in Chongqing Municipality of China. Furthermore, the distributions of hotspot areas for biodiversity and ecosystem services were mapped based on the relationship between cumulative ecosystem services and areas. Finally the statistical analysis was processed focused on specific conservation objectives. The results showed that hotspot areas can conserve the most biodiversity but with the least ecosystem services under the conservation plans target to biodiversity conservation. In contrast, depending on the ecosystem services of interest, hotspot areas can conserve the largest ecosystem services but with the least biodiversity. By integrating biodiversity and ecosystem services into conservation plan, we found that the conservation and regeneration of these small areas, would contribute to a conservation of 44% of the biodiversity hotspot and 14%–42% of the ecosystem services hotspot. Moreover, the current nature reserve selection was not maximize the biodiversity and ecosystem services compared to integration strategy, indicating that hotspot areas conservation and selection is vital for optimization protection of biodiversity and ecosystem services, and has practical significance for natural resources and ecosystem management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen R G, Pereira L S, Raes D et al., 1998. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56. Rome: FAO Press.

    Google Scholar 

  • Bai Y, Zhuang C W, Ouyang Z et al., 2011. Spatial characteristics between biodiversity and ecosystem services in a humandominated watershed. Ecological Complexity, 8(2): 177–183. doi: 10.1016/j.ecocom.2011.01.007

    Article  Google Scholar 

  • Balvanera P, Daily G C, Ehrlich P R et al., 2001. Conserving biodiversity and ecosystem services. Science, 291(5511): 2047. doi: 10.1126/science.291.5511.2047

    Article  Google Scholar 

  • Band L E, Hwang T, Hales T C et al., 2012. Ecosystem processes at the watershed scale: mapping and modeling ecohydrological controls of landslides. Geomorphology, 137(1): 159–167. doi: 10.1016/j.geomorph.2011.06.025

    Article  Google Scholar 

  • Bookbinder M P, Dinerstein E, Rijal A et al., 1998. Ecotourism’s support of biodiversity conservation. Conservation Biology, 12(6): 1399–1404.

    Google Scholar 

  • Budyko M I, 1974. Climate and Life. San Diego, California: Academic Press.

    Google Scholar 

  • Canadell J, Jackson R B, Ehleringer J B et al., 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia, 108(4): 583–595. doi: 10.1007/BF00329030

    Article  Google Scholar 

  • Chan K M A, Shaw M R, Cameron D R et al., 2006. Conservation planning for ecosystem services. PLoS Biology, 4(11): 2138–2152. doi: 10.1371/journal.pbio.0040379

    Google Scholar 

  • Chen L, Xie G D, Zhang C S et al., 2011. Modelling ecosystem water supply services across the Lancang River Basin. Journal of Resources and Ecology, 2(4): 322–327. doi: 10.3969/j.issn. 1674-764x.2011.04.005

    Google Scholar 

  • Chen S T, Huang Y, Zou J W et al., 2012. Interannual variability in soil respiration from terrestrial ecosystems in China and its response to climate change. Science China Earth Sciences, 55(12): 2091–2098. doi: 10.1007/s11430-012-4464-6

    Article  Google Scholar 

  • Costanza R, d’Arge R, de Groot R et al., 1997. The value of the world’s ecosystem services and natural capital. Nature, 387(6630): 253–260.

    Article  Google Scholar 

  • Crabtree R, Potter C, Mullen R et al., 2009. A modeling and spatio-temporal analysis framework for monitoring environmental change using NPP as an ecosystem indicator. Remote Sensing of Environment, 113(7): 1486–1496. doi: 10.1016/j.rse.2008.12.014

    Article  Google Scholar 

  • Daily G C, Matson P A, 2008. Ecosystem services: from theory to implementation. Proceedings of the National Academy of Sciences of the United States of America, 105(28): 9455–9456. doi: 10.1073/pnas.0804960105

    Article  Google Scholar 

  • De Fries R S, Foley J A, Asner G P, 2004. Land-use choices: balancing human needs and ecosystem function. Frontiers in Ecology and the Environment, 2(5): 249–257. doi: 10.1890/1540-9295(2004)002

    Article  Google Scholar 

  • De Groot R S, Alkemade R, Braat L et al., 2010. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecological Complexity, 7(3): 260–272. doi: 10.1016/j.ecocom.2009.10.006

    Article  Google Scholar 

  • Droogers P, Allen R G, 2002. Estimating reference evapotranspiration under inaccurate data conditions. Irrigation and Drainage Systems, 16(1): 33–45. doi: 10.1023/A:1015508322413

    Article  Google Scholar 

  • Egoh B, Rouget M, Reyers B et al., 2007. Integrating ecosystem services into conservation assessments: a review. Ecological Economics, 63(4): 714–721. doi: 10.1016/j.ecolecon.2007.04.007

    Article  Google Scholar 

  • Egoh B, Reyers B, Rouget M et al., 2008. Mapping ecosystem services for planning and management. Agriculture, Ecosystems and Environment, 127(1–2): 135–140. doi: 10.1016/j.agee. 2008.03.013

    Article  Google Scholar 

  • Egoh B, Reyers B, Rouget M et al., 2009. Spatial congruence between biodiversity and ecosystem services in South Africa. Biological Conservation, 142(3): 553–562. doi: 10.1016/j. biocon.2008.11.009

    Article  Google Scholar 

  • Eigenbrod F, Anderson B J, Armsworth P R et al., 2009. Ecosystem service benefits of contrasting conservation strategies in a human-dominated region. Proceedings of the Royal Society B, 276(1699): 2903–2911. doi: 10.1098/rspb.2009.0528

    Article  Google Scholar 

  • Fu B J, Liu Y, Lu Y H et al., 2011. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecological Complexity, 8(4): 284–293. doi: 10.1016/j.ecocom.2011.07.003

    Article  Google Scholar 

  • Gao X, Huete A R, Ni W et al., 2000. Optical-biophysical relationships of vegetation spectra without background contamination. Remote Sensing of Environment, 74(3): 609–620. doi: 10.1016/S0034-4257(00)00150-4

    Article  Google Scholar 

  • Goldman R L, Tallis H, Kareiva P et al., 2008. Field evidence that ecosystem service projects support biodiversity and diversify options. Proceedings of the National Academy of Sciences of the United States of America, 105(27): 9445–9448. doi: 10.1073/pnas.0800208105

    Article  Google Scholar 

  • Hargreaves G H, Samani Z A, 1985. Reference crop evapotrans-piration from temperature. Applied Engineering in Agriculture, 1(2): 96–99.

    Article  Google Scholar 

  • Hewlett J D, 1982. Principles of Forest Hydrology. University of Georgia Press, Athens, Georgia, USA.

    Google Scholar 

  • Hickey R, 2000). Slope angle and slope length solutions for GIS. Cartography, 29(1): 1–8. doi: 10.1080/00690805.2000.9714334

    Article  Google Scholar 

  • Hunter L M, Manuel D J, Gonzalez G et al., 2003. Population and land use change in the California Mojave: natural habitat implications of alternative futures. Population Research and Policy Review, 22(4): 373–397. doi: 10.1023/A:1027311225410

    Article  Google Scholar 

  • Janzen D H, 1998. Gardenification of wildland nature and the human footprint. Science, 279(5355): 1312–1313. doi: 10.1126/science.279.5355.1312

    Article  Google Scholar 

  • Jin Z, Qi Y C, Dong Y S, 2007. Storage of biomass and net primary productivity in desert shrubland of Artemisia ordosica on Ordos Plateau of Inner Mongolia, China. Journal of Forestry Research, 18(4): 298–300. doi: 10.1007/s11676-007-0059-z

    Article  Google Scholar 

  • Jonsson P, Eklundh L, 2002. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Transactions on Geoscience and Remote Sensing, 40(8): 1824–1932. doi: 10.1109/TGRS.2002.802519

    Article  Google Scholar 

  • Jonsson P, Eklundh L, 2004. TIMESAT-A Program for analyzing time-series of satellite sensor data. Computers & Geosciences, 30(8): 833–845. doi: 10.1016/j.cageo.2004.05.006

    Article  Google Scholar 

  • Konarska K M, Sutton P C, Castellon M, 2002. Evaluating scale dependence of ecosystem service valuation: a comparison of NOAA-AVHRR and Landsat TM datasets. Ecological Economics, 41(3): 491–507. doi: 10.1016/S0921-8009(02)00096-4

    Article  Google Scholar 

  • Li T H, Li W K, Qian Z H, 2010. Variations in ecosystem service value in response to land use changes in Shenzhen. Ecological Economics, 69(7): 1427–1435. doi: 10.1016/j.ecolecon.2008.05.018

    Article  Google Scholar 

  • Li X S, Wu B F, Wang H et al., 2011. Regional soil erosion risk assessment in Hai Basin. Journal of Remote Sensing, 15(2): 372–387. doi: 1007-4619 (2011) 02-372-16

    Google Scholar 

  • Liu S L, Cui S L, Dong S K et al., 2008. Evaluating the influence of road networks on landscape and regional ecological risk: a case study in Lancang River Valley of Southwest China. Ecological Engineering, 34: 91–99. doi: 10.1016/j.ecoleng.2008.07.006

    Article  Google Scholar 

  • Liu S L, Dong Y H, Deng L et al., 2014. Forest fragmentation and landscape connectivity change associated with road network extension and city expansion: a case study in the Lancang River Valley. Ecological Indicators, 36: 160–168. doi: 10.1016/j.ecolind.2013.07.018

    Article  Google Scholar 

  • Lufafa A, Tenywa M M, Isabirye M et al., 2003. Prediction of soil erosion in a Lake Victoria basin catchment using a GIS-based Universal Soil Loss model. Agricultural Systems, 76(3): 883–894. doi: 10.1016/S0308-521X(02)00012-4

    Article  Google Scholar 

  • Luo T X, 1996. Patterns of Net Primary Productivity for Chinese Major Forest Types and Its Mathematical Models. Chinese Academy of Sciences.

    Google Scholar 

  • Miao C Y, Duan Q Y, Sun Q H et al., 2014. Assessment of CMIP5 climate models and projected temperature changes over Northern Eurasia. Environmental Research Letters, 9(5): 055007. doi: 10.1088/1748-9326/9/5/055007

    Article  Google Scholar 

  • Millennium Ecosystem Assessment, 2005. Millennium Ecosystem Assessment Synthesis Report. Washington D C, Island Press. http://www.millenniumassessment. org/en/Synthesis.aspx.

    Google Scholar 

  • McCann K S, 2000. The diversity-stability debate. Nature, 405(6783): 228–233. doi: 10.1038/35012234

    Article  Google Scholar 

  • Monteith J L, 1972. Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, 9(3): 747–766. doi: 10.2307/2401901

    Article  Google Scholar 

  • Myneni R B, Maggion S, Iaquinta J et al., 1995. Optical remote sensing of vegetation: modeling, caveats, and algorithms. Remote Sensing of Environment, 51(1): 169–188. doi: 10.1016/0034-4257(94)00073-V

    Article  Google Scholar 

  • Nelson E, Mendoza G, Regetz J et al., 2009. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Frontiers in Ecology and the Environment, 7(1): 4–11. doi: 10.1890/080023

    Article  Google Scholar 

  • Ni J, 2004. Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China. Plant Ecology, 174(2): 217–234. doi: 10.1023/B:VEGE.0000049097.85960.10

    Article  Google Scholar 

  • Onaindia M, de Manuel B F, Madariaga I et al., 2013. Co-benefits and trade-offs between biodiversity, carbon storage and water flow regulation. Forest Ecology and Management, 289(1): 1–9. doi: 10.1016/j.foreco.2012.10.010

    Article  Google Scholar 

  • Orme C D L, Davies R G, Burgess M et al., 2005. Global hotspot of species richness are not congruent with endemism or threat. Nature, 436(7053): 1016–1019. doi: 10.1038/nature03850

    Article  Google Scholar 

  • Potter C S, Randerson J T, Field C B et al., 1993. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochemical Cycles, 7(4): 811–841. doi: 10.1029/93GB02725

    Article  Google Scholar 

  • Potter C S, Klooster S A, Brooks V, 1999. Interannual variability in terrestrial net primary production: exploration of trends and controls on regional to global scales. Ecosystems, 2(1): 36–48. doi: 10.1007/s100219900056

    Article  Google Scholar 

  • Potter C S, Klooster S, Myneni R et al., 2003. Continental scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982–1998. Global and Planetary Change, 39(3–4): 201–213. doi: 10.1016/j.gloplacha.2003. 07.001

    Article  Google Scholar 

  • Prendergast J R, Quinn R M, Lawton J H et al., 1993. Rare species, the coincidence of diversity hotspot and conservation strategies. Nature, 365: 335–337. doi: 10.1038/365335a0

    Article  Google Scholar 

  • Reyers B, Polasky S, Heather T et al., 2012. Finding common ground for biodiversity and ecosystem services. Bioscience, 62(5): 503–507. doi: 10.1525/bio.2012.62.5.12

    Article  Google Scholar 

  • Sedjo R, Sohngen B, 2012. Carbon sequestration in forests and soils. Annual Review of Resource Economics (Annual Reviews), 4: 127–144. doi: 10.1146/annurev-resource-083110-115941

    Article  Google Scholar 

  • Tallis H T, Ricketts T, Nelson E et al., 2010. InVEST 1.005 Beta User’s Guide. The Natural Capital Project. Stanford.

    Google Scholar 

  • United States Department of Agriculture, 1990. EPIC-Erosion/productivity Impact Calculator 1. Model Documentation. Technical Bulletin Number 1768. Washington DC.

    Google Scholar 

  • Turner W R, Brandon K, Brooks T M et al., 2007. Global conservation of biodiversity and ecosystem services. Bioscience, 57(10): 868–873. doi: 10.1641/B571009

    Article  Google Scholar 

  • Van Jaarsveld A S, Freitag S, Chown S L et al., 1998. Biodiversity assessment and conservation strategies. Science, 279(5359): 2106–2108. doi: 10.1126/science.279.5359.2106

    Article  Google Scholar 

  • Van Remortel R D, Hamilton M E, Hickey R J, 2001. Estimating the LS-factor for RUSLE through iterative slope length processing of digital elevation data within ArcInfo grid. Cartography, 30(1): 27–35. doi: 10.1080/00690805.2001.9714133

    Article  Google Scholar 

  • Vitousek P M, Mooney H A, Lubchenco J et al., 1997. Human Domination of Earth’s Ecosystems. Science, 277(5325): 494–499. doi: 10.1126/science.277.5325.494

    Article  Google Scholar 

  • Wischmeier W H, Smith D D, 1978. Predicting Rainfall Erosion Losses—A Guide to Conservation Planning. Agriculture Handbooks (USA), No. 537, Washington D C.

    Google Scholar 

  • Zhang C Q, Li W H, Zhang B et al., 2012. Water yield of Xitiaoxi River Basin based on InVEST Modeling. Journal of Resources and Ecology, 3(1): 50–54. doi: 10.5814/j.issn.1674-764x.2012.01.008

    Article  Google Scholar 

  • Zhang K L, Shu A P, Xu X L et al., 2008. Soil erodibility and its estimation for agricultural soils in China. Journal of Arid Environments, 72(6): 1002–1011. doi: 10.1016/j.jaridenv.2007.11.018

    Article  Google Scholar 

  • Zhang L, Dawes W R, Walker G R, 2001. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research, 37(3): 701–708. doi: 10.1029/2000WR900325

    Article  Google Scholar 

  • Zhao B, Kreuter U, Li B et al., 2004. An ecosystem service value assessment of land-use change on Chongming Island, China. Land Use Policy, 21(2): 139–148. doi: 10.1016/j.landusepol.2003.10.003

    Article  Google Scholar 

  • Zhou W Z, Liu G H, Pan J J et al., 2005. Distribution of available soil water capacity in China. Journal of Geographical Sciences, 15(1): 3–12. doi: 10.1007/BF02873101

    Article  Google Scholar 

  • Zhu W, Pan Y, He H et al., 2006. Simulation of maximum light use efficiency for some typical vegetation types in China. Chinese Science Bulletin, 51(4): 457–463. doi: 10.1007/s11434-006-0457-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyun Ouyang.

Additional information

Foundation item: Under the auspices of National Key Technology Research and Development Program of China (No. 2011BAC09B08), Special Issue of National Remote Sensing Survey and Assessment of Eco-Environment Change Between 2000 and 2010 (No. STSN-04-01)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Ouyang, Z., Xu, W. et al. Optimizing hotspot areas for ecological planning and management based on biodiversity and ecosystem services. Chin. Geogr. Sci. 26, 256–269 (2016). https://doi.org/10.1007/s11769-016-0803-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-016-0803-4

Keywords

Navigation