Skip to main content
Log in

Monitoring soil salt content using HJ-1A hyperspectral data: A case study of coastal areas in Rudong County, Eastern China

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Hyperspectral data are an important source for monitoring soil salt content on a large scale. However, in previous studies, barriers such as interference due to the presence of vegetation restricted the precision of mapping soil salt content. This study tested a new method for predicting soil salt content with improved precision by using Chinese hyperspectral data, HuanJing-Hyper Spectral Imager (HJ-HSI), in the coastal area of Rudong County, Eastern China. The vegetation-covered area and coastal bare flat area were distinguished by using the normalized differential vegetation index at the band length of 705 nm (NDVI705). The soil salt content of each area was predicted by various algorithms. A Normal Soil Salt Content Response Index (NSSRI) was constructed from continuum-removed reflectance (CR-reflectance) at wavelengths of 908.95 nm and 687.41 nm to predict the soil salt content in the coastal bare flat area (NDVI705 < 0.2). The soil adjusted salinity index (SAVI) was applied to predict the soil salt content in the vegetation-covered area (NDVI705 ≥ 0.2). The results demonstrate that 1) the new method significantly improves the accuracy of soil salt content mapping (R 2 = 0.6396, RMSE = 0.3591), and 2) HJ-HSI data can be used to map soil salt content precisely and are suitable for monitoring soil salt content on a large scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldakheel Y Y, 2011. Assessing NDVI spatial pattern as related to irrigation and soil salinity management in Al-Hassa Oasis, Saudi Arabia. Journal of the Indian Society of Remote Sensing, 39(2): 171–180. doi: 10.1007/s12524-010-0057-z

    Article  Google Scholar 

  • Anderson-Cook C M, Alley M, Roygard J et al., 2002. Differentiating soil types using electromagnetic conductivity and crop yield maps. Soil Science Society of America Journal, 66(5): 1562–1570. doi: 10.2136/sssaj2002.1562

    Article  Google Scholar 

  • Bao Shidan, 2000. Soil and Agricultural Chemistry Analysis. Beijing: Agriculture Publication, 355–356. (in Chinese)

    Google Scholar 

  • Bilgili A V, Cullu M A, van Es H et al., 2011. The use of hyperspectral visible and near infrared reflectance spectroscopy for the characterization of salt-affected soils in the Harran Plain, Turkey. Arid Land Research and Management, 25(1): 19–37. doi: 10.1080/15324982.2010.528153

    Article  Google Scholar 

  • Blackburn G A, 1998. Quantifying chlorophylls and caroteniods at leaf and canopy scales: An evaluation of some hyperspectral approaches. Remote Sensing of Environment, 66(3): 273–285.

    Article  Google Scholar 

  • Ding J L, Wu M C, Tiyip T, 2011. Study on soil salinization information in arid region using remote sensing technique. Agricultural Sciences in China, 10(3): 404–411. doi: 10.1016/S1671-2927(11)60019-9

    Article  Google Scholar 

  • Ding Jianli, Yao Yuan, 2013. Evaluation of soil moisture contents under sparse vegetation coverage conditions using microwave remote sensing technology in arid region. Scientia Geographica Sinica, 33(7): 837–843. (in Chinese)

    Google Scholar 

  • Dutkiewicz A, Lewis M, Ostendorf B, 2009. Evaluation and comparison of hyperspectral imagery for mapping surface symptoms of dryland salinity. International Journal of Remote Sensing, 30(3): 693–719. doi: 10.1080/01431160802392612

    Article  Google Scholar 

  • Farifteh J, Farshad A, George R, 2006. Assessing salt-affected soils using remote sensing, solute modelling, and geophysics. Geoderma, 130(3): 191–206. doi: 10.1016/j.geoderma.2005.02.003

    Article  Google Scholar 

  • Farifteh J, van der Meer F, van der Meijde M et al., 2008. Spectral characteristics of salt-affected soils: A laboratory experiment. Geoderma, 145(3-4): 196–206. doi: 10.1016/j.geoderma.2008.03.011

    Article  Google Scholar 

  • Fang Ming, Chen Bangben, Hu Rongqin et al., 1990. Ecological salinization characters of sea beach soil in Jiangsu. Acta Pedologica Sinica, 27(3): 335–342. (in Chinese)

    Google Scholar 

  • Fernandez-Buces N, Siebe C, Cram S et al., 2006. Mapping soil salinity using a combined spectral response index for bare soil and vegetation: A case study in the former lake Texcoco, Mexico. Journal of Arid Environments, 65(4): 644–667. doi: 10.1016/j.jaridenv.2005.08.005

    Article  Google Scholar 

  • Gallagher F J, Pechmann I, Bogden J D et al., 2008. Soil metal concentrations and productivity of Betula populifolia (gray birch) as measured by field spectrometry and incremental annual growth in an abandoned urban Brownfield in New Jersey. Environmental Pollution, 156(3): 699–706. doi: 10.1016/j.envpol.2008.06.013

    Article  Google Scholar 

  • Gamon J, Serrano L, Surfus J, 1997. The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia, 112(4): 492–501. doi: 10.1007/s004420050337

    Article  Google Scholar 

  • Ghosh G, Kumar S, Saha S, 2012. Hyperspectral satellite data in mapping salt-affected soils using linear spectral unmixing analysis. Journal of the Indian Society of Remote Sensing, 40(1): 129–136. doi: 10.1007/s12524-011-0143-x

    Article  Google Scholar 

  • Gitelson A, Merzlyak M N, 1994. Spectral reflectance changes associated with autumn senescence of aesculus hippocastanum L. and Acer platanoides L. leaves. spectral features and relation to chlorophyll estimation. Journal of Plant Physiology, 143(3): 286–292. doi:10.1016/S0176-1617(11)81633-0

    Article  Google Scholar 

  • Gu Fengxue, Zhang Yuandong, Chu Yu et al., 2002. Primary analysis on groundwater, soil moisture and salinity in Fukang Oasis of Southern Junggar Basin. Chinese Geographical Science, 12(4): 333–338. doi:10.1007/s11769-002-0038-4

    Article  Google Scholar 

  • Horler D, Dockray M, Barber J, 1983. The red edge of plant leaf reflectance. International Journal of Remote Sensing, 4(2): 273–288. doi: 10.1080/01431168308948546

    Article  Google Scholar 

  • Huete A R, 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3): 295–309. doi: 10.1016/0034-4257(88)90106-X

    Article  Google Scholar 

  • Kinal J, Stoneman G, Williams M, 2006. Calibrating and using an EM31 electromagnetic induction meter to estimate and map soil salinity in the jarrah and karri forests of south-western Australia. Forest Ecology And Management, 233(1): 78–84. doi: 10.1016/j.foreco.2006.06.003

    Article  Google Scholar 

  • Lobell D, Lesch S, Corwin D et al., 2010. Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI. Journal of Environmental Quality, 39(1): 35–41. doi: 10.2134/jeq2009.0140

    Article  Google Scholar 

  • Mashimbye Z E, Cho M A, Nell J P et al., 2012. Model-based integrated methods for quantitative estimation of soil salinity from hyperspectral remote sensing data: A case study of selected south African soils. Pedosphere, 22(5): 640–649. doi: 10.1016/S1002-0160(12)60049-6

    Article  Google Scholar 

  • Merzlyak M N, Gitelson A A, Chivkunova O B et al., 1999. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiologia Plantarum, 106(1): 135–141. doi: 10.1034/j.1399-3054.1999.106119.x

    Article  Google Scholar 

  • Metternicht G, Zinck J, 2003. Remote sensing of soil salinity: Potentials and constraints. Remote Sensing of Environment, 85(1): 1–20. doi: 10.1016/S0034-4257(02)00188-8

    Article  Google Scholar 

  • Mulder V L, de Bruin S, Schaepman M E et al., 2011. The use of remote sensing in soil and terrain mapping—A review. Geoderma, 162(1–2): 1–19. doi: 10.1016/j.geoderma.2010.12.018

    Article  Google Scholar 

  • Penuelas J, Filella I, 1998. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends In Plant Science, 3(4): 151–156. doi: 10.1016/S1360-1385(98)01213-8

    Article  Google Scholar 

  • Rao B R M, Sankar T R, Dwivedi R S et al., 1995. Spectral behavior of salt-affected soils. International Journal of Remote Sensing, 16(12): 2125–2136. doi: 10.1080/01431169508954546

    Article  Google Scholar 

  • Shamsi S R F, Zare SAbtahi S A, 2013. Soil salinity characteristics using moderate resolution imaging spectroradiometer (MODIS) images and statistical analysis. Archives of Agronomy and Soil Science, 59(4): 471–489. doi: 10.1080/03650340.2011.646996

    Article  Google Scholar 

  • Slavich P, Petterson G, 1990. Estimating average rootzone salinity from electromagnetic induction (EM-38) measurements. Soil Research, 28(3): 453–463. doi: 10.1071/SR9900453

    Article  Google Scholar 

  • Su Zilong, Zhang Guanghui, Yu Yan, 2013. Soil moisture characteristic of different land use types in the typical black soil region of northeast China. Scientia Geographica Sinica, 33(9): 1104–1110. (in Chinese)

    Google Scholar 

  • Verrelst J, Schaepman M E, Koetz B et al., 2008. Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data. Remote Sensing of Environment, 112(5): 2341–2353. doi: 10.1016/j.rse.2007.11.001

    Article  Google Scholar 

  • Wang Qiao, Wu Chuanqing, Li Qing et al., 2010. Chinese HJ-1A/B satellites and data characteristics. Science China (Earth Sciences), 53(1): 51–57. doi: 10.1007/s11430-010-4139-0

    Article  Google Scholar 

  • Wei D, Yan H, Song X S et al., 2001. Hydrochemical characteristics of salt marsh wetlands in western Songnen Plain. Journal of Geographical Sciences, 11(2): 217–223. doi: 10.1007/BF02888693

    Article  Google Scholar 

  • Weng Y, Gong P, Zhu Z, 2010. A spectral index for estimating soil salinity in the Yellow River Delta region of China using EO-1 Hyperion data. Pedosphere, 20(3): 378–388. doi: 10.1016/S1002-0160(10)60027-6

    Article  Google Scholar 

  • Weng Yongling, Gong Peng, 2006. A review on remote sensing technique for salt affected soils. Scientia Geographica Sinica, 26(3): 369–375. (in Chinese)

    Google Scholar 

  • Xu Yongming, Zhao Qiaohua, Ba Yaer et al., 2012. Spatio-temporal variations of land surface evapotranspiration of Bosten Lake Basin based on MODIS data. Scientia Geographica Sinica, 32(11): 1353–1357. (in Chinese)

    Google Scholar 

  • Zhang M M, SuY P, Wu P, 2011. Using HJ-I satellite remote sensing data to surveying the Saline soil distribution in Yinchuan Plain of China. African Journal of Agricultural Research, 6(32): 6592–6597. doi: 10.5897/AJAR11.130

    Google Scholar 

  • Zhang T, Zeng S, Gao Y et al., 2011. Using hyperspectral vegetation indices as a proxy to monitor soil salinity. Ecological Indicators, 11(6): 1552–1562. doi: 10.1016/j.ecolind.2011.03.025

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijie Pu.

Additional information

Foundation item: Under the auspices of National Natural Science Foundation of China (No. 41230751, 41101547), Scientific Research Foundation of Graduate School of Nanjing University (No. 2012CL14)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Pu, L., Zhu, M. et al. Monitoring soil salt content using HJ-1A hyperspectral data: A case study of coastal areas in Rudong County, Eastern China. Chin. Geogr. Sci. 25, 213–223 (2015). https://doi.org/10.1007/s11769-014-0693-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-014-0693-2

Keywords

Navigation