Skip to main content
Log in

Regional-scale identification of three-dimensional pattern of vegetation landscapes

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

The altitudinal pattern of vegetation is usually identified by field surveys, however, these can only provide discrete data on a local mountain. Few studies identifying and analyzing the altitudinal vegetation pattern on a regional scale are available. This study selected central Inner Mongolia as the study area, presented a method for extracting vegetation patterns in altitudinal and horizontal directions. The data included a vegetation map at a 1:1 000 000 scale and a digital elevation model at a 1:250 000 scale. The three-dimensional vegetation pattern indicated the distribution probability for each vegetation type and the transition zones between different vegetation landscapes. From low to high elevations, there were five vegetation types in the southern mountain flanks, including the montane steppe, broad-leaved forest, coniferous mixed forest, montane dwarf-scrub and sub-alpine shrub-meadow. Correspondingly, only four vegetation types were found in the northern flanks, except for the montane steppe. This study could provide a general model for understanding the complexity and diversity of mountain environment and landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batllori E, Blanco-Moreno J M, Ninot J M et al., 2009. Vegetation patterns at the alpine treeline ecotone: The influence of tree cover on abrupt change in species composition of alpine communities. Journal of Vegetation Science, 20(5): 814–825. doi: 10.1111/j.1654-1103.2009.01085.x

    Article  Google Scholar 

  • Bhattarai K R, Vetaas O R, 2003. Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, East Nepal. Global Ecology and Biogeography, 12(4): 327–340. doi: 10.1046/j.1466-822X.2003.00044.x

    Article  Google Scholar 

  • Bussmann R W, 2006. Vegetation zonation and nomenclature of African mountains—An overview. Lyonia, 11(1): 41–66.

    Google Scholar 

  • Da L J, Kang M M, Song K et al., 2009. Altitudinal zonation of human-disturbed vegetation on Mt. Tianmu, eastern China. Ecological Research, 24(6): 1287–1299. doi: 10.1007/s11284-009-0613-6

    Article  Google Scholar 

  • Daniels L D, Veblen T T, 2003. Regional and local effects of disturbance and climate on altitudinal treelines in northern Patagonia. Journal of Vegetation Science, 14(5): 733–742. doi: 10.1111/j.1654-1103.2003.tb02205.x

    Article  Google Scholar 

  • Erschbamer B, Kiebacher T, Mallaun M et al., 2009. Short-term signals of climate change along an altitudinal gradient in the South Alps. Plant Ecology, 202(1): 79–89. doi: 10.1007/s11258-008-9556-1

    Article  Google Scholar 

  • Fang J Y, Ohsawa M, Kira T, 1996. Vertical vegetation zones along 30 degrees N latitude in humid East Asia. Plant Ecology, 126(2): 135–149. doi: 10.1007/BF00045600

    Google Scholar 

  • Frahm J P, Gradstein S R, 1991. An altitudinal zonation of tropical rain-forests using bryophytes. Journal of Biogeography, 18(6): 669–678. doi: 10.2307/2845548

    Article  Google Scholar 

  • Gian-Reto W, Beissner S, Burga C A, 2005. Trends in the upward shift of alpine plants. Journal of Vegetation Science, 16(5): 541–548. doi: 10.1111/j.1654-1103.2005.tb02394.x

    Article  Google Scholar 

  • Hagen S B, Jepsen J U, Ims R A et al., 2007. Shifting altitudinal distribution of outbreak zones of winter moth Operophtera brumata in sub-arctic birch forest: A response to recent climate warming? Ecography, 30(2): 299–307. doi: 10.1111/j.2007.0906-7590.04981.x

    Google Scholar 

  • Hamilton A C, Perrott R A, 1981. A study of altitudinal zonation in the montane forest belt of Mt. Elgon, Kenya/Uganda. Plant Ecology, 45(2): 107–125. doi: 10.1007/BF00119220

    Google Scholar 

  • Hemp A, 2002. Ecology of the pteridophytes on the southern slopes of Mt. Kilimanjaro—I. Altitudinal distribution. Plant Ecology, 159(2): 211–239. doi: 10.1023/A:1015569125417

    Article  Google Scholar 

  • Hemp A, 2006. Continuum or zonation? Altitudinal gradients in the forest vegetation of Mt. Kilimanjaro. Plant Ecology, 184(1): 27–42. doi: 10.1007/s11258-005-9049-4

    Article  Google Scholar 

  • Hörsch B, 2003. Modelling the spatial distribution of montane and subalpine forests in the central Alps using digital elevation models. Ecological Modelling, 168(3): 267–282. doi: 10.1016/S0304-3800(03)00141-8

    Article  Google Scholar 

  • Kessler M, 2000. Altitudinal zonation of Andean cryptogam communities. Journal of Biogeography, 27(2): 275–282. doi: 10.1046/j.1365-2699.2000.00399.x

    Article  Google Scholar 

  • Kitayama K, 1992. An altitudinal transect study of the vegetation on Mount Kinabalu, Borneo. Plant Ecology, 102(2): 149–171. doi: 10.1007/BF00044731

    Google Scholar 

  • Kitayama K, Aiba S I, 2002. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. Journal of Ecology, 90(1): 37–51. doi: 10.1046/j.0022-0477.2001.00634.x

    Article  Google Scholar 

  • Körner C, 2000. Why are there global gradients in species richness? Mountains might hold the answer. Trends in Ecology & Evolution, 15(12): 513–514. doi: 10.1016/S0169-5347(00) 02004-8

    Article  Google Scholar 

  • Körner C, 2007. The use of’ altitude’ in ecological research. Trends in Ecology & Evolution, 22(11): 569–574. doi: 10.1016/j.tree.2007.09.006

    Article  Google Scholar 

  • Lauer W, 1993. Human development and environment in the Andes: A geoecological overview. Mountain Research and Development, 13(2): 157–166. doi: 10.2307/3673633

    Article  Google Scholar 

  • Leuschner C, 2000. Are high elevations in tropical mountains arid environments for plants? Ecology, 81(5): 1425–1436. doi: 10.1890/0012-9658(2000)081

    Article  Google Scholar 

  • Li Bo, 1962. The basic types and ecogeographic distribution of regional characteristic vegetation in the Inner Mongolia. Journal of Inner Mongolia University, 4(2): 41–71. (in Chinese)

    Google Scholar 

  • Liu Huaxun, 1981. The vertical zonation of mountain vegetation in China. Acta Geographica Sinica, 36(3): 267–279. (in Chinese)

    Google Scholar 

  • Liu Peigui, 1992. The vertical distribution patterns of higher fungus and their evaluation from the Mt. Daqing, Inner Mongolia. Mountain Research, 10(1): 19–24. (in Chinese)

    Google Scholar 

  • Lovett J C, 1996. Elevational and latitudinal changes in tree associations and diversity in the eastern Arc Mountains of Tanzania. Journal of Tropical Ecology, 12(5): 629–650. doi: 10.1017/S0266467400009846

    Article  Google Scholar 

  • Mekbib F, 2008. Farmers’ breeding of Sorghum in the center of diversity, Ethiopia: I. socioecotype differentiation, varietal mixture and selection efficiency. Journal of New Seeds, 9(1): 43–67. doi: 10.1080/15228860701879299

    Article  Google Scholar 

  • Miehe G, Miehe S, Vogel J et al., 2007. Highest treeline in the northern hemisphere found in southern Tibet. Mountain Research and Development, 27(2): 169–173. doi: 10.1659/mrd.0792

    Article  Google Scholar 

  • Miehe S, 1994. Humidity-dependent sequences of altitudinal vegetation belts in the northwestern Karakorum. In: Zheng D et al. (eds.). Proceedings of International Symposium on the Karakorum and Kunlun Mountains. Beijing: China Meteorological Press, 347–363.

    Google Scholar 

  • Mysterud A, Iversen C, Austrheim G, 2007. Effects of density, season and weather on use of an altitudinal gradient by sheep. Applied Animal Behaviour Science, 108(1–2): 104–113. doi: 10.1016/j.applanim.2006.10.017

    Article  Google Scholar 

  • Odland A, 2009. Interpretation of altitudinal gradients in South Central Norway based on vascular plants as environmental indicators. Ecological Indicators, 9(3): 409–421. doi: 10.1016/j.ecolind.2008.05.012

    Article  Google Scholar 

  • Peng Buzhuo, 1986. Some problems of vertical zonation in Mt Namjagbarwa area. Acta Geographica Sinica, 41(1): 51–58. (in Chinese)

    Google Scholar 

  • Proctor J, Edwards I D, Payton R W et al., 2007. Zonation of forest vegetation and soils of Mount Cameroon, West Africa. Plant Ecology, 192(2): 251–269. doi: 10.1007/s11258-007-9326-5

    Article  Google Scholar 

  • Sachs A, 2003. The ultimate ‘other’: Post-colonialism and Alexander von Humboldt’s ecological relationship with nature. History and Theory, 42(4): 111–13 doi: 10.1046/j.1468-2303.2003.00261.x

    Article  Google Scholar 

  • Sang W G, 2009. Plant diversity patterns and their relationships with soil and climatic factors along an altitudinal gradient in the middle Tianshan Mountain area, Xinjiang, China. Ecological Research, 24(2): 303–314. doi: 10.1007/s11284-008-0507-z

    Article  Google Scholar 

  • Smith W K, Germino M J, Johnson D M et al., 2009. The altitude of alpine treeline: A bellwether of climate change effects. Botanical Review, 75(2): 163–190. doi: 10.1007/s12229-009-9030-3

    Article  Google Scholar 

  • Sun R H, Zhang B P, Tan J, 2008. A multivariate regression model for precipitation estimation in the Daqing Mountains. Mountain Research and Development, 28(3–4): 318–325. doi: 10.1659/mrd.0944

    Google Scholar 

  • Takyu M, Kubota Y, Aiba S et al., 2005. Pattern of changes in species diversity, structure and dynamics of forest ecosystems along latitudinal gradients in East Asia. Ecological Research, 20(3): 287–296. doi: 10.1007/s11284-005-0044-y

    Article  Google Scholar 

  • Tang C Q, 2006. Forest vegetation as related to climate and soil conditions at varying altitudes on a humid subtropical mountain, Mount Emei, Sichuan, China. Ecological Research, 21(2): 174–180. doi: 10.1007/s11284-005-0106-1

    Article  Google Scholar 

  • Tang C Q, Ohsawa M, 1997. Zonal transition of evergreen, deciduous, and coniferous forests along the altitudinal gradient on a humid subtropical mountain, Mt. Emei, Sichuan, China. Plant Ecology, 133(1): 63–78. doi: 10.1023/A:1009729027521

    Article  Google Scholar 

  • Troll C, 1973. The upper timberlines in different climatic zones. Arctic Antarctic and Alpine Research, 5(3): A3–A18.

    Google Scholar 

  • Walther G R, Beissner S, Burga C A, 2005. Trends in the upward shift of alpine plants. Journal of Vegetation Science, 16(5): 542–548. doi: 10.1111/j.1654-1103.2005.tb02394.x

    Article  Google Scholar 

  • Wang G H, Zhou G S, Yang L M et al., 2002. Distribution, species diversity and life-form spectra of plant communities along an altitudinal gradient in the northern slopes of Qilianshan Mountains, Gansu, China. Plant Ecology, 165(2): 169–181. doi: 10.1023/A:1022236115186

    Article  Google Scholar 

  • Wang X P, Fang J Y, Sanders N J et al., 2009. Relative importance of climate vs local factors in shaping the regional patterns of forest plant richness across Northeast China. Ecography, 32(1): 133–142. doi: 10.1111/j.1600-0587.2008.05507.x

    Article  Google Scholar 

  • Wang Z H, Tang Z Y, Fang J Y, 2007. Altitudinal patterns of seed plant richness in the Gaoligong Mountains, South-east Tibet, China. Diversity and Distributions, 13(6): 845–854. doi: 10.1111/j.1472-4642.2007.00335.x

    Article  Google Scholar 

  • Wieser G, Matyssek R, Luzian R et al., 2009. Effects of atmospheric and climate change at the timberline of the Central European Alps. Annals of Forest Science, 66(4): 402. doi: 10.1051/forest/2009023.

    Article  Google Scholar 

  • Zhang B P, 1995. Geoecology and sustainable development in the Kunlun Mountains, China. Mountain Research and Development, 15(3): 283–292. doi: 10.2307/3673935

    Article  Google Scholar 

  • Zhang B P, Wu H Z, Xiao F et al., 2006. Integration of data on Chinese mountains into a digital altitudinal belt system. Mountain Research and Development, 26(2): 163–171. doi: 10.1659/0276-4741(2006)26

    Article  Google Scholar 

  • Zimmerer K S, 1999. Overlapping patchworks of mountain agriculture in Peru and Bolivia: Toward a regional-global landscape model. Human Ecology, 27(1): 135–165. doi: 10.1023/A:1018761418477

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranhao Sun.

Additional information

Foundation item: Under the auspices of National Natural Science Foundation of China (No. 41001111, 41030528)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, R., Zhang, B. & Chen, L. Regional-scale identification of three-dimensional pattern of vegetation landscapes. Chin. Geogr. Sci. 24, 104–112 (2014). https://doi.org/10.1007/s11769-013-0647-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-013-0647-0

Keywords

Navigation