Skip to main content
Log in

Assimilating ASAR data for estimating soil moisture profile using an ensemble Kalman filter

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Active microwave remote sensing data were used to calculate the near-surface soil moisture in the vegetated areas. In this study, Advanced Synthetic Aperture Radar (ASAR) observations of surface soil moisture content were used in a data assimilation framework to improve the estimation of the soil moisture profile at the middle reaches of the Heihe River Basin, Northwest China. A one-dimensional soil moisture assimilation system based on the ensemble Kalman filter (EnKF), the forward radiative transfer model, crop model, and the Distributed Hydrology-Soil-Vegetation Model (DHSVM) was developed. The crop model, as a semi-empirical model, was used to estimate the surface backscattering of vegetated areas. The DHSVM is a distributed hydrology-vegetation model that explicitly represents the effects of topography and vegetation on water fluxes through the landscape. Numerical experiments were conducted to assimilate the ASAR data into the DHSVM and in situ soil moisture at the middle reaches of the Heihe River Basin from June 20 to July 15, 2008. The results indicated that EnKF is effective for assimilating ASAR observations into the hydrological model. Compared with the simulation and in situ observations, the assimilated results were significantly improved in the surface layer and root layer, and the soil moisture varied slightly in the deep layer. Additionally, EnKF is an efficient approach to handle the strongly nonlinear problem which is practical and effective for soil moisture estimation by assimilation of remote sensing data. Moreover, to improve the assimilation results, further studies on obtaining more reliable forcing data and model parameters and increasing the efficiency and accuracy of the remote sensing observations are needed, also improving estimation accuracy of model operator is important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brubaker K L, Entekhabi D, 1996. Analysis of feedback mechanisms in land-atmosphere interaction. Water Resources Research, 32(5): 1343–1357. doi: 10.1029/96WR00005

    Article  Google Scholar 

  • Burgers G, Leeuwen P J, Evensen G, 1998. Analysis scheme in the ensemble Kalman filter. Monthly Weather Review, 126(6): 1719–1724. doi: 10.1175/1520-0493(1998)126

    Article  Google Scholar 

  • Crow W T, Berg M J, 2010. An improved approach for estimating observation and model error parameters in soil moisture data assimilation. Water Resources Research, 46(12): 12–51. doi: 10.1029/2010WR009402.

    Article  Google Scholar 

  • Delworth T, Manabe S, 1988. The influence of potential evaporation on the variabilities of the simulated soil wetness and climate. Journal of Climate, 1(5): 523–547. doi: 10.1175/1520-0442(1988)001

    Article  Google Scholar 

  • Dobson M C, Ulaby F T, 1986. Active microwave soil moisture research. IEEE Transactions on Geoscience and Remote Sensing, 24(1): 23–36. doi: 10.1109/TGRS.1986.289585

    Article  Google Scholar 

  • Dobson M C, Ulaby F T, Hallikainen M T, 1985. Microwave dielectric behavior of wet soil-Part II: Dielectric mixing models. IEEE Transactions on Geoscience and Remote Sensing, 23(1): 35–46. doi: 10.1109/TGRS.1985.289498

    Article  Google Scholar 

  • England A W, Galantowicz J F, Schretter M S, 1992. The radiobrightness thermal inertia measure of soil moisture. IEEE Transactions on Geoscience and Remote Sensing, 30(1): 132–139. doi: 10.1109/36.124223

    Article  Google Scholar 

  • Entekhabi D, Galantowicz J F, Njoku E G, 1994. Solving the inverse problem for soil moisture and temperature profiles by sequential assimilation of multifrequency remotely sensed observations. IEEE Transactions on Geoscience and Remote Sensing, 32(2): 438–448. doi: 10.1109/36.295058

    Article  Google Scholar 

  • Etienne H, Dombrowsky E, 2003. Estimation of the optimal interpolation parameters in a quasi-geostrophic model of the Northeast Atlantic using ensemble methods. Journal of Marine System, 40(4): 317–339. doi.org/10.1016/S0924-7963(03)00023-X

    Article  Google Scholar 

  • Evensen G, 1994. Sequential data assimilation with a non-linear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research, 99(C5): 10143–10162. doi: 10.1029/94JC00572

    Article  Google Scholar 

  • Fung A K, Lee Z, Chen K S, 1992. Backscattering from a randomly rough dielectric surface. IEEE Transactions on Geoscience and Remote Sensing, 30(2): 356–369. doi: 10.1109/36.134085

    Article  Google Scholar 

  • Galantowicz J F, Entekhabi D, Njoku E G, 1999. Tests of sequential data assimilation for retrieving profile soil moisture and temperature from observed L-band radiobrightness. IEEE Transactions on Geoscience and Remote Sensing, 37(4): 1860–1870. doi: 10.1109/36.774699

    Article  Google Scholar 

  • Haugen E J, Evensen G, 2002. Assimilation of SLA and SST data into an OGCM for the Indian Ocean. Ocean Dynamics, 52(3): 133–151. doi: 10.1007/s10236-002-0014-7

    Article  Google Scholar 

  • Heathman G C, Starks P J, Ahuja L R et al., 2003. ASsimilation of surface soil moisture to estimate profile soil water content. Journal of Hydrology, 27(1): 1–17. doi: 10.1016/S0022-1694(03)00088-X

    Article  Google Scholar 

  • Houser P R, Shuttleworth W J, Gupta H V, 1998. Integration of soil moisture remote sensing and hydrologic modeling using data assimilation. Water Resource Research, 34(12): 3405–3420. doi: 10.1029/1998WR900001

    Article  Google Scholar 

  • Huang C H, Li X, Lu L et al., 2008. Experiments of one-dimensional soil moisture assimilation system based on ensemble Kalman filter. Remote Sensing of Environment, 112(3): 888–900. doi: 10.1016/j.rse.2007.06.026

    Article  Google Scholar 

  • Kogan F, l990. Remote sensing of weather impacts on vegetation in non-homogeneous areas. International Journal of Remote Sensing, 11(8): 1405–1419. doi: 10.1080/01431169008955102

    Google Scholar 

  • Lee S J, Jurkevich L, Dewaele P et al., 1994. Speckle filtering of synthetic aperture radar images: A review. Remote Sensing Reviews, 8(4): 313–340. doi: 10.1080/02757259409532206

    Article  Google Scholar 

  • Li F Q, Wade T, William P et al., 2010. Towards the estimation root-zone soil moisture via the simultaneous assimilation of thermal and microwave soil moisture retrievals. Advances in Water Resources, 33(2): 201–214. doi: 10.1016/j.advwatres.2009.11.007

    Article  Google Scholar 

  • Li X, Koike T, Mahadevan P, 2004. A very fast simulated re-annealing (VFSA) approach for land data assimilation. Computer & Geosciences, 30(3): 239–248. doi: 10.1016/j.cageo.2003.11.002

    Article  Google Scholar 

  • Li X, Lu L, Cheng G D et al., 2001. Quantifying landscape structure of the Heihe River Basin, north-west China using FRAGSTATS. Journal of Arid Environments, 48(4): 521–535. doi: org/10.1006/jare.2000.0715

    Article  Google Scholar 

  • Liu Qian, Wang Mingyu, Zhao Yingshi, 2010. A weighted average soil moisture assimilation experiment based on ensemble Kalman filter. Geography and Geo-Information Science, 26(1): 94–97. (in Chinese)

    Google Scholar 

  • Mancini M R, Hoeben R, Troch P, 1999. Multifrequency radar observations of bare surface soil moisture content: A laboratory experiment. Water Resources Research, 35(6): 1827–1838. doi: 10.1029/1999WR900033

    Article  Google Scholar 

  • Miller R N, Ghil M, Ghautiez F, 1994. Advanced data assimilation in strongly nonlinear dynamical system. Journal of the Atmospheric Sciences, 51(8): 1037–1055. doi: 10.1175/1520-0469(1994)051〈1037:ADAISN〉2.0.CO;2

    Article  Google Scholar 

  • Reichle R H, Crow W T, Christian L et al., 2008. An adaptive ensemble Kalman filter for soil moisture data assimilation. Water Resources Research, 44(3): 23–34. doi: 10.1029/2007WR006357

    Article  Google Scholar 

  • Reichle R H, McLaughlin D B, Entekhabi D, 2002a. Hydrologic data assimilation with the ensemble Kalman filter. Monthly Weather Review, 130(1): 103–114. doi: 10.1175/1520-0493(2002)130

    Article  Google Scholar 

  • Reichle R H, Walker J P, Koster R D, 2002b. Extended versus ensemble filtering for land data assimilation. Journal of Hydrometeorology, 3(2): 728–740. doi: 10.1175/1525-7541(2002)003

    Article  Google Scholar 

  • Roo R D, Duetal Y, 2001. A semi-empirical backscattering model at L-band and C-band for a soybean canopy with soil moisture inversion. IEEE Transactions on Geoscience and Remote Sensing, 39(4): 864–872. doi: 10.1109/36.917912

    Article  Google Scholar 

  • Sandholt I, Rasmussen K, Andersen J, 2002. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 79(2): 213–224. doi: 10.1016/S0034-4257(01)00274-7

    Article  Google Scholar 

  • Sellers P J, Schimel D S, 1993. Remote sensing of the land biosphere and biogeochemistry in the EOS era: Science priorities, methods and implementation. Global and Planetary Change, 7(4): 279–297. doi: 10.1016/0921-8181(93)90002-6

    Article  Google Scholar 

  • Ulaby F T, Allen C T, Eger G, 1984. Relating microwave backscattering coefficient to leaf area index. Remote Sensing of Environment, 14: 113–133.

    Article  Google Scholar 

  • Ulaby F T, Batlivala P P, Dobson M C, 1978. Microwave backscatter dependence on surface roughness, soil moisture, and soil texture. IEEE Transactions on Geoscience and Remote Sensing, 16(4): 286–295. doi: 10.1109/TGE.1978.294586

    Google Scholar 

  • Ulaby F T, Sarahandi K, Donald M K, 1990. Michigan microwave canopy scattering model. International Journal of Remote Sensing, 11(7): 1223–1253. doi: 10.1080/01431169008955090

    Article  Google Scholar 

  • Verlaan M, Heemink A W, 2001, Nonlinearity in data assimilation applications: A practical method for analysis. Monthly Weather Review, 129(6): 1578–1589. doi: 10.1175/1520-0493(2001)129

    Article  Google Scholar 

  • Walker J P, Willgoose G R, 2001. One-dimensional soil moisture profile retrieval by assimilation of near-surface observations: A comparison of retrieval algorithms. Advances in Water Resources, 24(6): 631–650. doi: 10.1016/S0309-1708(00)00043-9

    Article  Google Scholar 

  • Wang S G, Li X, Han X J et al., 2011. Estimation of surface soil moisture and roughness from multi-angular ASAR imagery in the Watershed Allied Telemetry Experimental Research (WATER). Hydrology and Earth System Sciences, 15(5): 1415–1426. doi: 10.5194/hess-15-1415-2011

    Article  Google Scholar 

  • Wigmosta M S, Nijssen P S, Lettenmaier D P, 2002. The distributed hydrology soil vegetation model. In: Singh V P (eds.). Mathematical Models of Small Watershed Hydrology and Applications. Highlands Ranch: Water Resources Press, 7–42.

    Google Scholar 

  • Wigmosta M S, Vail L, Lettenmaier D P, 1994. A distributed hydrology-vegetation model for complex terrain. Water Resource Research, 30(6): 1665–1679. doi: 10.1029/94WR00436

    Article  Google Scholar 

  • Wu T D, Chen K S, Shi J C, 2008. A study of an AIEM model for bistatic scattering from randomly rough surfaces. IEEE Transactions on Geoscience and Remote Sensing, 46(9): 2584–2598. doi: 10.1109/TGRS.2008.919822

    Article  Google Scholar 

  • Yang Shenbing, Shen Shuanghe, 2009. Mapping rice yield based on assimilation of ASAR data with rice growth model. Journal of Remote Sensing, 13(2): 282–290. (in Chinese)

    Google Scholar 

  • Zhang S W, Li H R, Zhang W D et al., 2006. Estimating the soil moisture profile by assimilating near-surface observations with the ensemble Kalman filter (EnKF). Advances in Atmosphereic Sciences, 22(6): 936–945. doi: 10.1007/BF02918692

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Yu.

Additional information

Foundation item: Under the auspices of National Natural Science Foundation for Young Scientists of China (No. 41101321), Major State Basic Research Development Program of China (No. 2007CB714407), Key Projects in the National Science & Technology Pillar Program (No. 2009BAG18B01, 2012BAH28B03)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, F., Li, H., Gu, H. et al. Assimilating ASAR data for estimating soil moisture profile using an ensemble Kalman filter. Chin. Geogr. Sci. 23, 666–679 (2013). https://doi.org/10.1007/s11769-013-0623-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-013-0623-8

Keywords

Navigation