Skip to main content
Log in

Carbon storage and vertical distribution in three shrubland communities in Gurbantünggüt Desert, Uygur Autonomous Region of Xinjiang, Northwest China

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

This study was carried out in the Gurbantünggüt Desert, Uygur Autonomous Region of Xinjiang, Northwest China in August, 2009. To quantify the storage, contribution and vertical distribution patterns of plant biomass carbon (PBC) and soil organic carbon (SOC) in the study area, we investigated the carbon concentrations and its vertical distribution in three different desert shrubland communities dominated by Reaumuria soongorica, Haloxylon ammodendron + R. soongorica and Tamarix ramosissima + R. soongorica, respectively. We analyzed vertical distribution of root biomass carbon and soil carbon contents by excavating soil profiles for each dominated community. The results show that SOC is considerably the larger carbon pool in the soil layers of 1.0–3.0 m (the mean value of three shrubland communities is 38.46%) and 3.0–5.0 m (the mean value is 40.24%). In contrast, 70.74% of belowground biomass carbon storage in 0–1.0 m layer, and its content decrease with increasing soil depth. The Haloxylon ammodendron + R. soongorica shrubland community has the highest belowground biomass carbon among three selected communities. This study highlights the importance of SOC stored in deep soil layers (lower than 3.0 m from the surface) in arid shrubland communities in the global carbon balance. In addition, it provides the data support for revealing deep soil solid carbon potential, and offers scientific basis for the further research in the carbon cycle of terrestrial ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batjes N H, 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47(2): 151–163. doi: 10.1111/j.1365-2389.1996.tb01386.x

    Article  Google Scholar 

  • Blake G R, Hartge K H, 1986. Bulk density. In: Klute A (ed.). Methods of Soil Analysis. Part I, 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.

    Google Scholar 

  • Cleverly J R, Smith S D, Sala A et al., 1997. Invasive capacity of Tamarix ramosissima in a Mojave Desert floodplain: The role of drought. Oecologia, 111(1): 12–18. doi: 10.1007/s004420050202

    Article  Google Scholar 

  • Dosskey M G, Bertsch P M, 1997. Transport of dissolved organic matter through a sandy forest soil. Soil Science Society of America Journal, 61(3): 920–927. doi: 10.2136/sssaj1997.03615995006100030030x

    Article  Google Scholar 

  • Fissore C, Giardina C P, Kolka R K et al., 2008. Temperature and vegetation effects on soil organic carbon quality along a forested mean annual temperature gradient in North America. Global Change Biology, 14(1): 193–205. doi: 10.1111/j.1365-2486.2007.01478.x

    Google Scholar 

  • He N P, Yu Q, Wu L et al., 2008. Carbon and nitrogen store and storage potential as affected by land-use in a Leymus chinensis grassland of northern China. Soil Biology and Biochemistry, 40(12): 2952–2959. doi: 10.1016/j.soilbio.2008.08.018

    Article  Google Scholar 

  • Huang Changyong, 2000. Pedology. Beijing: Chinese Agriculture Press. (in Chinese)

    Google Scholar 

  • Jobbágy E G, Jackson R B, 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2): 423–436. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2

    Article  Google Scholar 

  • Kalapos T, Boogaard R, Lambers H, 1996. Effect of soil drying on growth, biomass allocation and leaf gas exchange of two annual grass species. Plant and Soil, 185(1): 137–149. doi: 10.1007/BF022 57570

    Article  Google Scholar 

  • Li C H, Li Y, Tang L S, 2010. Soil organic carbon stock and carbon efflux in deep soils of desert and oasis. Environmental Earth Sciences, 60(3): 549–557. doi: 10.1007/s12665-009-0195-1

    Article  Google Scholar 

  • Li Chuhua, Li yan, Xie Jingxia et al., 2007. Comparative on microbial community composition and microbial activities in desert and oasis soils. Acta Ecologica Sinica, 27(8): 3391–3399. (in Chinese)

    Google Scholar 

  • Mi N, Wang S Q, Liu J Y et al., 2008. Soil inorganic carbon storage pattern in China. Global Change Biology, 14(10): 2380–2387. doi: 10.1111/j.1365-2486.2008.01642.x

    Article  Google Scholar 

  • Page A L, Miller R H, Keeney D R, 1982. Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties. Madison: American Society of Agronomy.

    Google Scholar 

  • Nelson D W, Sommers L E, 1982. Total carbon, organic carbon, and organic matter. In: Page A L et al. (eds.). Methods of Soil Analysis. Part 2: Chemical and Microbial Properties. Madison: American Society of Agronomy, 539–552.

    Google Scholar 

  • Omonode R A, Vyn T J, 2006. Vertical distribution of soil organic carbon and nitrogen under warm-season native grasses relative to croplands in west-central Indiana, USA. Agriculture Ecosystems & Environment, 117(2–3): 159–170. doi: 10.1016/j.agee.2006.03.031

    Article  Google Scholar 

  • Perez-Quezada J F, Delpiano C A, Snyder K A et al., 2011. Carbon pools in an arid shrubland in Chile under natural and afforested conditions. Journal of Arid Environments, 75(1): 29–37. doi: 10.1016/j.jaridenv.2010.08.003

    Article  Google Scholar 

  • Qian J H, Doran J W, Waiters D T, 1997. Maize plant contributions to root zone available carbon and microbial transformation of nitrogen. Soil Biology Biochemistry, 29(9–10): 1451–1462. doi: 10.1016/S0038-0717(97)00043-6

    Article  Google Scholar 

  • Qian Y B, Wu Z N, Zhang L Y et al., 2004. Impact of habitat heterogeneity on plant community pattern in Gurbantünggüt Desert. Journal of Geographical Sciences, 14(4): 447–455.

    Article  Google Scholar 

  • Qian Y B, Wu Z N, Zhang L Y et al., 2007. Vegetation-environment relationships in Gurbantünggüt Desert. Acta Ecologica Sinica, 27(7): 2802–2811. doi: 1000-0933(2007)07-2802-10

    Google Scholar 

  • Qian Y B, Zhang H Y, Wu Z N et al., 2011. Vegetation composition and distribution on the northern slope of Karlik Mountain to Naomaohu basin, East Tianshan Mountains. Journal of Arid Land, 3(1): 15–24. doi: 10.3724/SP.J.1227.2011.00015

    Article  Google Scholar 

  • Qiu Y, Fu B J, Wang J et al., 2001. Spatial variability of soilmoisturecontent and its relation to environmental indices in a semiarid gully catchment of the Loess Plateau, China. Journal of Arid Environments, 49(4): 723–750. doi: 10.1006/jare.2001.0828

    Article  Google Scholar 

  • Schwendenmann L, Pendall E, 2006. Effects of forest conversion into grassland on soil aggregate structure and carbon storage in Panama: Evidence from soil carbon fractionation and stable isotopes. Plant and Soil, 288(1–2): 217–232. doi: 10.1007/s11104-006-9109-0

    Article  Google Scholar 

  • Schwinning S, Ehleringer J R, 2001. Water use trade-offs and optimal adaptations to pulse-driven arid shrubland communities. Journal of Ecology, 89(3): 464–480. doi: 10.1046/j.1365-2745.2001.00576.x

    Article  Google Scholar 

  • Shi L, Zhao S Q, Tang Z Y et al., 2011. The changes in China’s forests: An analysis using the forest identity. PLoS ONE, 6(6): e20778. doi: 10.1371/journal.pone.0020778

    Article  Google Scholar 

  • Singh S K, Singh A K, Sharma B K et al., 2007. Carbon stock and organic carbon dynamic in soils of Rajasthan, India. Journal of Arid Environments, 68(3): 408–421. doi: 10.1016/j.jaridenv.2006.06.005

    Article  Google Scholar 

  • Sommer R, Denich M, Vlek P L G, 2000. Carbon storage and root penetration in deep soils under small-farmer land-use systems in the Eastern Amazon region, Brazil. Plant and Soil, 219(1–2): 231–241. doi: 10.1023/A:1004772301158

    Article  Google Scholar 

  • Wang S L, Huang M, Shao X M et al., 2004. Vertical distribution of soil organic carbon in China. Environmental Management, 33(1): S200–S209. doi: 10.1007/s00267-003-9130-5

    Article  Google Scholar 

  • Wang Y G, Li Y, Ye X H et al., 2010. Profile storage of organic/inorganic carbon in soil: From forest to desert. Science of the Total Environment, 408(8): 1925–1931. doi: 10.1016/j.scitotenv.2010.01.015

    Article  Google Scholar 

  • Williams M, Dunkerley D, Deckker De P et al., 1998. Quaternary Environments, 2nd ed. New York: A Hodder Arnold Publication, 171–183.

    Google Scholar 

  • Wu G L, Liu Z H, Zhang L et al., 2010. Long-term fencing improved soil properties and soil organic carbon storage in an alpine swamp meadow of western China. Plant and Soil, 332(1–2): 331–337. doi: 10.1007/s11104-010-0299-0

    Article  Google Scholar 

  • Wu J X, Zhang X M, Deng C Z et al., 2010. Characteristics and dynamics analysis of Populus euphratica populations in the middle reaches of Tarim River. Journal of Arid Land, 2(4): 250–256. doi: 10.3724/SP.J.1227.2010.00250

    Google Scholar 

  • Xu H, Li Y, 2006. Water-use strategy of three central Asian desert shrubs and their responses to rain pulse events. Plant and Soil, 285(1–2): 5–17. doi: 10.1007/s11104-005-5108-9

    Article  Google Scholar 

  • Xu H, Li Y, Xu G Q et al., 2007. Ecophysiological response and morphological adjustment of two Central Asian desert shrubs towards variation in summer precipitation. Plant Cell and Environment, 30(4): 399–409. doi: 10.1111/j.1365-3040.2006.001626.x

    Article  Google Scholar 

  • Zhang L H, Xie Z K, Zhao R F et al., 2012. The impact of land use change on soil organic carbon and labile organic carbon stocks in the Longzhong region of Loess Plateau. Journal of Arid Land, 4(3): 241–250. doi: 10.3724/SP.J.1227.2012.00241

    Article  Google Scholar 

  • Zhang Liyun, 2002. H. ammodendron and H. persicum in Xinjiang Desert. Journal of Plants in China, 5: 4–5. (in Chinese)

    Google Scholar 

  • Zhu H, Zhao C Y, Li J et al., 2008. Analysis of impact factors on scrubland soil respiration in the southern Gurbantünggüt Desert, central Asia. Environmental Geology, 54(7): 1403–1409. doi: 10.1007/s00254-007-0921-5

    Google Scholar 

  • Zhu W B, LV A F, Jia S F, 2011. Spatial distribution of vegetation and the influencing factors in Qaidam Basin based on NDVI. Journal of Arid Land, 3(2): 85–93. doi: 10.3724/SP.J.1227.2011.00085

    Article  Google Scholar 

  • Zou T, Li Y, Xu H et al., 2010. Responses to precipitation treatment for Haloxylon ammodendron growing on contrasting textured soils. Ecological Research, 25(1): 185–194. doi: 10.1007/s11284-009-0642-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukun Hu.

Additional information

Foundation item: Under the auspices of Major State Basic Research Development Program of China (No. 2009CB825103-1)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, Y., Hu, Y., Fang, F. et al. Carbon storage and vertical distribution in three shrubland communities in Gurbantünggüt Desert, Uygur Autonomous Region of Xinjiang, Northwest China. Chin. Geogr. Sci. 22, 541–549 (2012). https://doi.org/10.1007/s11769-012-0561-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-012-0561-x

Keywords

Navigation