Skip to main content
Log in

Stable isotopes in precipitation in Xilin River Basin, northern China and their implications

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Under the increasing pressure of water shortage and steppe degradation, information on the hydrological cycle in steppe region in Inner Mongolia, China is urgently needed. An intensive investigation of the temporal variations of δD and δ18O in precipitation was conducted in 2007–2008 in the Xilin River Basin, Inner Mongolia in the northern China. The δD and δ18O values for 54 precipitation samples range from +1.1‰ to −34.7‰ and −3.0‰ to −269‰, respectively. This wide range indicates that stable isotopes in precipitation are primarily controlled by different condensation mechanisms as a function of air temperature and varying sources of vapor. The relationship between δD and δ18O defined a well constrained line given by δD = 7.89 δ 18 O + 9.5, which is nearly identical to the Meteoric Water Line in the northern China. The temperature effect is clearly displayed in this area. The results of backward trajectory of each precipitation day show that the vapor of the precipitation in cold season (October to March) mainly originates from the west while the moisture source is more complicated in warm season (April to September). A light precipitation amount effect existes at the precipitation event scale in this area. The vapor source of precipitation with higher d-excesses are mainly from the west wind or neighboring inland area and precipitation with lower d-excesses from a monsoon source from the southeastern China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggarwal P, 2002. Isotope hydrology at the International Atomic Energy Agency. Hydrological Processes, 16(11): 2257–2259. doi: 10.1002/hyp.5043

    Article  Google Scholar 

  • Araguas L, Froehlich K, Rozanski K, 2000. Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrological Processes, 14(8): 1341–1355. doi: 10.1002/1099-1085(20000615)

    Article  Google Scholar 

  • Barthold F, Wu J, Vaché K et al., 2010. Identification of geographic runoff sources in a data sparse region: Hydrological processes and the limitations of tracer-based approaches. Hydrological Processes, 24(16): 2313–2327. doi: 10.1002/hyp.7678

    Article  Google Scholar 

  • Chen Z, 1988. Topography and climate of the Xilin River basin. In: Research on Grassland Ecosystem, Inner Mongolia. Beijing: Science Press, 13–22. (in Chinese)

    Google Scholar 

  • Clark I, Fritz P, 1997. Environmental Isotopes in Hydrogeology. Boca Raton: Lewis Publishers.

    Google Scholar 

  • Craig H, 1961. Isotopic variation in meteoric waters. Science, 133(3465): 1702–1703. doi: 10.1126/science.133.3465.1702

    Article  Google Scholar 

  • Dansgaard W, 1964. Stable isotopes in precipitation. Tellus, 16(4): 436–468. doi: 10.1111/j.2153-3490.1964.tb00181.x

    Article  Google Scholar 

  • Dinçer T, Davis G, 1984. Application of environmental isotope tracers to modeling in hydrology. Journal of Hydrology, 68(1–4): 95–113. doi: 10.1016/0022-1694(84)90206-3

    Article  Google Scholar 

  • Dincer T, Al-Mugrin A, Zimmermann U, 1974. Study of the infiltration and recharge through the sand dunes in arid zones with special reference to the stable isotopes and thermonuclear tritium. Journal of Hydrology, 23(1–2): 79–109. doi:10.1016/0022-1694(74)90025-0

    Article  Google Scholar 

  • Draxler R, Rolph G, 2003. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model. Available at: http://www.arl.noaa.gov/ready/hysplit4.html.

  • Gat J, Bowser C, Kendall C, 1994. The contribution of evaporation from the Great Lakes to the continental atmosphere estimate based on stable isotope data. Geophysics Research Letter, 21(7): 557–560. doi: 10.1029/94GL00069

    Article  Google Scholar 

  • Gat J, Carmi I, 1970. Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area. Journal of Geophysical Research, 75: 3039–3048. doi: 10.1029/JC075i015p03039

    Article  Google Scholar 

  • Gat J, Dansgaard W, 1972. Stable isotope survey of fresh water occurrence in Israel and the Jordan Rift Valley. Journal of Hydrology, 16: 177–211. doi: 10.1016/0022-1694(72)90052-2

    Article  Google Scholar 

  • Geyh M, Gu W, 1991. Preliminary isotope hydrological study in the arid Guriani Grassland area, Inner Mongolia. In: Isotope Techniques in Water Resources Development. Vienna: IAEA, 661–662.

    Google Scholar 

  • Gibson J, Edwards T, Birks S et al., 2005. Progress in isotope tracer hydrology in Canada. Hydrological Processes 19(1): 303–327. doi: 10.1002/hyp.5766

    Article  Google Scholar 

  • Gibson J, Edwards T, Bursey G, 1993. Estimating evaporation using stable isotopes: Quantitative results and sensitivity analysis for two catchments in northern Canada. Nordic Hydrology, 24: 79–94.

    Google Scholar 

  • Gourcy L, Groening M, Aggarwal P, 2005. Stable oxygen and hydrogen isotopes in precipitation. In: Aggarwal P et al. (eds.). Isotopes in the Water Cycle: Past, Present and Future of a Developing Science. Amsterdam: Springer, 39–51. doi: 10.1007/1-4020-3023-1_4

    Google Scholar 

  • IAEA (International Atomic Energy Agency), 1980. Arid zone hydrology: Investigations with isotope techniques. In: Proceedings of an Advisory Group Meeting. Vienna: IAEA.

    Google Scholar 

  • IAEA, WMO (World Meteorological Organization), 2004. Global Network of Isotopes in Precipitation (GNIP) Database (2004), Vienna, Austria. Available at: http://www.isohis.iaea.org

  • IAEA. 2001. Environmental isotopes in the hydrological cycle, principles and applications, Volume III: Surface water. In: Mook W (ed.). International Hydrological Programme, Technical Documents in Hydrology 39. Vienna: IAEA.

    Google Scholar 

  • Ingraham N, Taylor B, 1986. Hydrogen isotope study of large-scale meteoric water transport in Northern California and Nevada. Journal of Hydrology, 85(1–2): 183–197. doi: 10.1016/0022-1694(86)90084-3

    Article  Google Scholar 

  • Jouzel J, 1986. Isotopes in cloud: multiphase and multistage condensation process. In: Fritz P, Fontes J (eds.). Handbook of Environmental Isotope Geochemistry. NewYork: Elsevier, 61–112.

    Google Scholar 

  • Jouzel J, Froehkich K, Schotterer U, 1997. Deuterium and oxygen-18 in present-day precipitation: Data and modeling. Hydrological Science, 42(5): 747–763. doi: 10.1080/02626669709492070

    Article  Google Scholar 

  • Kattan Z, 2006. Characterization of surface water and groundwater in the Damascus Ghotta basin: Hydrochemical and environmental isotopes approaches. Environmental Geology, 51(2): 173–201. doi: 10.1007/s00254-006-0316-z

    Google Scholar 

  • Kendall C, Coplen T, 2001. Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrological Processes, 15(7): 1363–1393. doi: 10.1002/hyp.217

    Article  Google Scholar 

  • Kreutz K, Wake C, Aizen V, 2003. Seasonal deuterium excess in a Tien Shan ice core: Influence of moisture transport and recycling in Central Asia. Geophysics Research Letter, 30(18): 19–22. doi: 10.1029/2003GL017896

    Article  Google Scholar 

  • Lis G, Wassenaar L, Hendry, 2008. High-precision laser spectroscopy D/H and 18O/16O measurements of microliter natural water samples. Analytical Chemistry, 80(1): 287–293. doi: 10.1021/ac701716q

    Article  Google Scholar 

  • Liu J, Zhao Y, Liu E, Wang D, 1997. Discuss on the stable isotope time-space distribution law of China atmospheric precipitation. Science and Technology on Reconnaissance, 3: 34–39. (in Chinese)

    Google Scholar 

  • Liu F, Williams M, Caine N, 2004. Sources waters and flow paths in an alpine catchment, Colorado Front Range, USA, Water Resources Research, 40: W09401. doi: 10.1029/2004WR003076

    Article  Google Scholar 

  • Merlivat L, Jouzel J, 1979. Global climatic interpretation of the deuterium-oxygen-18 relationship for precipitation. Journal of Geophysical Research, 84(C8): 5029–5033. doi: 10.1029/JC084iC08p05029

    Article  Google Scholar 

  • Schneider K, Ketzer B, Breuer L et al., 2007. Evaluation of evapotranspiration methods for model validation in a semi-arid watershed in northern China. Advances in Geosciences, 11: 37–42.

    Article  Google Scholar 

  • Song G, Pan J, Wang D et al., 2007. Analysis of the moisture transportation characteristics on summer drought in Inner Mongolia. Meteorological Monthly, 33(6): 75–81. doi: 1000-0526.0.2007-06-010

    Google Scholar 

  • Song X, Liu X, Xia J et al., 2006. A study of interaction between surface water and groundwater using environmental isotopes in Huaisha River basin. Science in China (Series D), 49(12): 1299–1310. doi: 10.1007/s11430-006-1299-z

    Article  Google Scholar 

  • Tian L, Masson-Delmotte V, Stievenard M, 2001. Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes. Journal of Geophysical Research, 106(D22): 28081–28088. doi: 10.1029/2001JD900186

    Article  Google Scholar 

  • Tong C, Wu J, Yong S et al., 2004. A landscape-scale assessment of steppe degradation in the Xilin River Basin, Inner Mongolia, China. Journal of Arid Environment, 59(1): 133–149. doi: 10.1016/j.jaridenv.2004.01.004

    Article  Google Scholar 

  • Wang F, 1997. The law of isotopic concentration field on the time-space distribution and environmental effect of atmospheric water in Jilin Province. Jilin Geology, 16(1): 51–56. (in Chinese). doi: 1001-2427.0.1997-01-006

    Google Scholar 

  • Wu J, Overton C, 2002. Asian ecology: Pressing problems and research challenges. Bulletin of Ecological Society of America, 83(3): 189–194. doi: 10.1890/0012-9623(2002)083

    Article  Google Scholar 

  • Wu J, Ding Y, Ye B et al., 2010. Spatio-temporal variation of stable isotopes in precipitation in the Heihe River basin, Northwestern China. Environmental Earth Sciences, 61(6): 1123–1134. doi: 10.1007/s12665-009-0432-7

    Article  Google Scholar 

  • Yakirevich A, Dody A, Adar E et al., 1998. Distribution of stable isotopes in arid storms. II. A double-component kinematic wave flow and transport model. Hydrogeology Journal, 6(1): 66–76. doi: 10.1007/s100400050133

    Article  Google Scholar 

  • Yao T, Masson V, Jouzel J et al., 1999.Relationship between δ18O in precipitation and surface air temperature in the Urumqi River Basin, East Tianshan Mountain, China. Geophysics Research Letter, 26(23): 3473–3480. doi: 10.1029/1999GL006061

    Article  Google Scholar 

  • Zhang X, Liu J, Tian L et al., 2004. Variation of δ18O in precipitation along vapor transport paths. Advances in Atmospheric Sciences 21(4): 562–572. doi: 10.1007/BF02915724

    Article  Google Scholar 

  • Zheng Shuhui, Hou Fagao, Ni Baoling, 1983. The study on deuterium and oxygen-18 in precipitation in China. Chinese Science Bulletin, 28(13): 801–806. (in Chinese)

    Google Scholar 

  • Zhou S, Nakawo M, Sakai A et al., 2007. Water isotope variations in the snow pack and summer precipitation at July 1 Glacier, Qilian Mountains in northwest China. Chinese Science Bulletin, 52(21): 2963–2972. doi: 10.1007/s11434-007-0401-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinkui Wu.

Additional information

Foundation item: Under the auspices of Nation Basic Research Program of China (No. 2007CB411502), German Science Foundation (Research Unit 536), Independent Research Project from State Key Laboratory of Cryospheric Science (No. SKLCS-ZZ-2010-02)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Ding, Y., Ye, B. et al. Stable isotopes in precipitation in Xilin River Basin, northern China and their implications. Chin. Geogr. Sci. 22, 531–540 (2012). https://doi.org/10.1007/s11769-012-0543-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-012-0543-z

Keywords

Navigation