Skip to main content
Log in

Application of stable isotope techniques in studies of carbon and nitrogen biogeochemical cycles of ecosystem

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Stable isotope techniques have been proved useful as tools for studying the carbon (C) and nitrogen (N) biogeochemical cycles of ecosystem. This paper firstly introduced the basic principles and the distribution characteristics of stable isotope, then reviewed the recent advances and applications of stable isotope in the C and N biogeochemical cycles of ecosystem. By applying the 13C natural abundance technique, ecologists are able to understand the photosynthetic path and CO2 fixation of plants, the CO2 exchange and C balance status of ecosystem, the composition, distribution and turnover of soil organic C and the sources of organic matter in food webs, while by using the 13C labeled technique, the effects of elevated CO2 on the C processes of ecosystem and the sources and fate of organic matter in ecosystem can be revealed in detail. Differently, by applying the 15N natural abundance technique, ecologists are able to analyze the biological N2-fixation, the N sources of ecosystem, the N transformation processes of ecosystem and the N trophic status in food webs, while by using the 15N labeled technique, the sources, transformation and fate of N in ecosystem and the effects of N input on the ecosystem can be investigated in depth. The applications of both C and N isotope natural abundance and labeled techniques, combined with the elemental, other isotope (34S) and molecular biomarker information, will be more propitious to the investigation of C and N cycle mechanisms. Finally, this paper concluded the problems existed in current researches, and put forward the perspective of stable isotope techniques in the studies on C and N biogeochemical cycles of ecosystem in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbadie L, Mariotti A, Menaut J C, 1992. Independence of savanna grasses from soil organic matter for their nitrogen supply. Ecology, 73(2): 608–613.

    Article  Google Scholar 

  • Aber J D, Mcdowell W, Nadelhoffer KJ et al., 1998. Nitrogen saturation in northern forest ecosystems, hypotheses revisited. Bioscience, 48: 921–934.

    Article  Google Scholar 

  • Amiard V, Morvan-Bertrand A, Billard J P et al., 2003. Fate of fructose supplied to leaf sheaths after defoliation of Lolium perenne L.: Assessment by 13C-fructose labeling. Journal of Experimental Botany, 54: 1231–1243. doi: 10.1093/jxb/erg125

    Article  Google Scholar 

  • Anderson J E, Kriedemann P E, Austin M P et al., 2000. Euca lypts forming a canopy functional type in dry sclerophyll forests respond differentially to environment. Australian Journal of Botany, 48(6): 759–775. doi: 10.1071/BT99073

    Article  Google Scholar 

  • Ashkenas L R, Johnson S L, Gregory S V et al., 2004. A stable isotope tracer study of nitrogen uptake and transformation in an old-growth forest stream. Ecology, 85(6): 1725–1739. doi: 10.1890/03-0032

    Article  Google Scholar 

  • Banning N C, Grant C D, Jones D L et al., 2008. Recovery of soil organic matter, organic matter turnover and nitrogen cycling in a post-mining forest rehabilitation chronosequence. Soil Biology and Biochemistry, 40(8): 2021–2031. doi: 10.1016/j.soilbio.2008.04.010

    Article  Google Scholar 

  • Bateman A S, Kelly S D, Jickells T D, 2005. Nitrogen isotope relationships between crops and fertilizer: Implications for using nitrogen isotope analysis as an indicator of agricultural regime. Journal of Agricultural and Food Chemistry, 53(14): 5760–5765. doi: 10.1021/jf050374h

    Article  Google Scholar 

  • Bateman A S, Kelly S D, 2007. Fertilizer nitrogen isotope signatures. Isotopes in Environmental and Health Studies, 43(3): 237–247. doi: 10.1080/10256010701550732

    Article  Google Scholar 

  • Bird M I, Haberle S G, Chivas A R, 1994. Effect of altitude on the carbon-isotope composition of forest and grassland soils from Papua New Guinea. Global Biogeochemical Cycles, 8(1): 13–22. doi: 10.1029/93GB03487

    Article  Google Scholar 

  • Bouillet J P, Laclau J P, Gonçalves J L M et al., 2008. Mixed-species plantations of Acacia mangium and Eucalyptus grandis in Brazil 2: Nitrogen accumulation in the stands and biological N2 fixation. Forest Ecology and Management, 255(12): 3918–3930. doi: 10.1016/j.foreco.2007.10.050

    Article  Google Scholar 

  • Buchmann N, Ehleringer J R, 1998. CO2 concentration profiles and carbon and oxygen isotopes in C3 and C4 crop canopies. Agricultural and Forest Meteorology, 89(1): 45–58. doi: 10.1016/S0168-1923(97)00059-2

    Article  Google Scholar 

  • Buchmann N, Hinckley T M, Ehleringer J R, 1998. Carbon isotope dynamics in Abies amabilis stands in the Cascades. Canadian Journal of Forest Research, 28: 808–819. doi: 10.1139/cjfr-28-6-808

    Article  Google Scholar 

  • Buchmann N, Kao W Y, Ehleringer J R, 1997. Influence of stand structure on carbon-13 of vegetation, soils, and canopy air within deciduous and evergreen forests in Utah (USA). Oecologia, 110(1): 109–119. doi: 10.1007/s004420050139

    Article  Google Scholar 

  • Cadisch G, Hairiah K, Giller K E, 2000. Applicability of the natural 15N abundance technique to measure N2 fixation in Arachis hypogaea grown on an Ultisol. Netherlands Journal of Agricultural Science, 48(1): 31–45. doi: 10.1016/S1573-5214 (00)80003-2

    Google Scholar 

  • Cai Deling, Zhang Shufang, Zhang Jing, 2002. Application of stable carbon and nitrogen isotope methods in ecological studies. Journal of Ocean University of Qingdao, 32(2): 287–295. (in Chinese)

    Google Scholar 

  • Carmichael R H, Annett B, Valiela I, 2004. Nitrogen loading to Pleasant Bay, Cape Cod: Application of models and stable isotopes to detect incipient nutrient enrichment of estuaries. Marine Pollution Bulletin, 48(1–2): 137–143. doi: 10.1016/S0025-326X (03)00372-2

    Article  Google Scholar 

  • Cathumbi S M, Cadisch G, Giller K E, 2002. 15N natural abundance as a tool for assessing N2-fixation of herbaceous, shrub and tree legumes in improved fallows. Soil Biology and Biochemistry, 34(8): 1059–1071. doi: 10.1016/S0038-0717(02) 00038-X

    Article  Google Scholar 

  • Chang S X, Choi W J, 2009. Application of the stable nitrogen isotope technique in studying ecosystem processes. In: Wu J G et al. (eds.). International Symposium on Modern Ecology (IV): Theory and Practice. Beijing: The Higher Education Press, 148–171.

    Google Scholar 

  • Choi W J, Arshad M A, Chang S X et al., 2006. Grain 15N of crops applied with organic and chemical fertilizers in a four-year rotation. Plant and Soil, 284(1–2): 165–174. doi: 10.1007/s11104-006-0038-8

    Article  Google Scholar 

  • Choi W J, Chang S X, Bhatti J, 2007. Drainage affects tree growth and C and N dynamics in a minerotrophic peatland. Ecology, 88(2): 443–453. doi: 10.1890/0012-9658(2007)88[443:DATGAC]2.0.CO;2

    Article  Google Scholar 

  • Choi W J, Chang S X, Curran M P et al., 2005a. Foliar δ13C and δ15N response of lodgepole pine and Douglas-fir seedlings to soil compaction and forest floor removal. Forest Science, 51(6): 546–555.

    Google Scholar 

  • Choi W J, Lee S M, Chang S X et al., 2005b. Variations of δ13C and δ15N in Pinus densiflora tree-rings and their relationship to environmental changes in eastern Korea. Water, Air, and Soil Pollution, 165: 173–187. doi: 10.1007/s11270-005-2253-y

    Article  Google Scholar 

  • Choi W J, Ro H M, Hobbie E A, 2003. Patterns of natural 15N in soils and plants from chemically and organically fertilized uplands. Soil Biology and Biochemistry, 35(11): 1493–1500. doi: 10.1016/S0038-0717(03)00246-3

    Article  Google Scholar 

  • Cole J J, Carpenter S R, Kitchell J F et al., 2002. Pathways of organic carbon utilization in small lakes: Results from a whole-lake 13C addition and coupled model. Limnology and Oceanography, 47(6): 1664–1675.

    Article  Google Scholar 

  • de Camargo P B, Trumbore S, Martinelli L et al., 1999. Soil carbon dynamics in regrowing forest of eastern Amazonia. Global Change Biology, 5(6): 693–702. doi: 10.1046/j.1365-2486.1999.00259.x

    Article  Google Scholar 

  • Del Galdo I, Six J, Peressotti A et al., 2003. Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes. Global Change Biology, 9(8): 1204–1213. doi: 10.1046/j. 1365-2486.2003.00657.x

    Article  Google Scholar 

  • Delegue M A, Fuhr M, Schwartz D et al., 2001. Recent origin of a large part of the forest cover in the Gabon coastal area based on stable carbon isotope data. Oecologia, 129(1): 106–113. doi: 10.1007/s004420100696

    Article  Google Scholar 

  • DeNiro M J, Epstein S, 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica Cosmochimica Acta, 42(5): 495–506. doi: 10.1016/0016-7037(78)90199-0

    Article  Google Scholar 

  • Ehleringer J R, Buchmann N, Flanagan L B, 2000. Carbon isotope ratios in belowground carbon cycle process. Ecological application, 10: 412–422. doi: 10.1890/1051-0761(2000)010 [0412:CIRIBC]2.0.CO;2

    Article  Google Scholar 

  • Ehleringer J R, Cerling T E, Helliker B R, 1997. C4 photosynthesis, atmospheric CO2, and climate. Oecologia, 112(3): 285–299. doi: 10.1007/s004420050311

    Article  Google Scholar 

  • Ehleringer J R, Hall A E, Farquhar G D, 1993. Stable Isotopes and Plant Carbon-water Relations. San Diego, Calif: Academic Press.

    Google Scholar 

  • Fang Jingyun, Tang Yanhong, Jiang Gaoming et al., 2002. Global Ecology: Climate Change and Ecological Response. Beijing: The Higher Education Press & Springer Press, 1–42. (in Chinese)

    Google Scholar 

  • Farquhar G D, Ehleringer J R, Hubick K T, 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 40: 503–537.

    Article  Google Scholar 

  • Francey R J, Tan P P, Allison C E et al., 1995. Changes in oceanic and terrestrial carbon uptake since 1982. Nature, 373: 326–330. doi: 10.1038/373326a0

    Article  Google Scholar 

  • Fry B, 2006. Stable Isotope Ecology. New York: Springer, 183–186.

    Book  Google Scholar 

  • Fukuhara H, Nemoto F, Takeuchi Y et al., 2007. Nitrate dynamics in a reed belt of a shallow sand dune lake in Japan: Analysis of nitrate retention using stable nitrogen isotope ratios. Hydrobiologia, 584(1): 49–58. doi: 10.1007/978-1-4020-6399-25

    Article  Google Scholar 

  • Galloway J N, Schlesinger W H, Hiran Levy II et al., 1995. Nitrogen fixation: Anthropogenic enhancement-environmental response. Global Biogeochemical Cycles, 9(2): 235–253. doi: 10.1029/95GB00158

    Article  Google Scholar 

  • Gathumbi S M, Cadisch G, Giller K E, 2002. 15N natural abundance as a tool for assessing N2-fixation of herbaceous, shrub and tree legumes in improved fallows. Soil Biology and Biochemistry, 34(8): 1059–1071. doi: 10.1016/S0038-0717(02) 00038-X

    Article  Google Scholar 

  • Giller K E, 2001. Nitrogen Fixation in Tropical Cropping Systems. Wallingford: CAB International, 423.

    Book  Google Scholar 

  • Graham M C, Eaves M A, Farmer J G et al., 2001. A study of carbon and nitrogen stable isotope and elemental ratios as potential indicators of source and fate of organic matter in sediments of the forth Estuary, Scotland. Estuarine, Coastal and Shelf Science, 52(3): 375–380. doi: 10.1006/ecss.2000.0742

    Article  Google Scholar 

  • Gu Binghe, 2007. Stable isotope labeling technique in ecosystem ecology research. In: Wu J G et al. (eds.). International Symposium on Modern Ecology (III): Subject Advance and Hot Theme. Beijing: The Higher Education Press, 202–227. (in Chinese)

    Google Scholar 

  • Gu Binghe, 2009. Application of stable isotope analysis in food web ecology. In: Wu J G et al. (eds.). International Symposium on Modern Ecology (IV): Theory and Practice. Beijing: The Higher Education Press, 172–190. (in Chinese)

    Google Scholar 

  • Gu B, Alexander V, 1993. Estimation of N2-fixation based on differences in the natural abundance of 15N among freshwater N2-fixing and non-N2-fixing algae. Oecologia, 68: 43–48. doi: 10.1007/BF00318029

    Article  Google Scholar 

  • Guehl J M, Fort C, Ferhi A, 1995. Differential response of leaf conductance, carbon isotope discrimination and water-use efficiency to nitrogen deficiency in maritime pine and pedunculated oak plants. New Phytologist, 131: 149–157. doi: 10.1111/j.1469-8137.1995.tb05716.x

    Article  Google Scholar 

  • Hadwen WL, Bunn S E, 2005. Food web responses to low-level nutrient and 15N-tracer additions in the littoral zone of an oligotrophic dune lake. Limnology and Oceanography, 50(4): 1096–1105.

    Article  Google Scholar 

  • Hagedorn F M, Saurer M, Blaser P, 2004a. A 13C tracer study to identify the origin of dissolved organic carbon in forested mineral soils. European Journal of Soil Science, 55: 91–100. doi: 10.1046/j.1365-2389.2003.00578.x

    Article  Google Scholar 

  • Hagedorn F, Siegwolf R, Hattenschwiler S, 2004b. The fate of new soil and dissolved organic matter in 13CO2 enrichment experiments. Geophysical Research Abstracts, 6: 03722.

    Google Scholar 

  • Hagedorn F, Spinnler D, Bundt M et al., 2003. The input and fate of new C in two forest soils under elevated CO2. Global Change Biology, 9(6): 862–872. doi: 10.1046/j.1365-2486.2003.00638.x

    Article  Google Scholar 

  • Hairiah K, Van Noordwijk M, Cadisch G, 2000. Quantification of biological N2 fixation of hedgerow trees in Northern Lampung. Netherlands Journal of Agricultural Science, 48(1): 47–59. doi: 10.1016/S1573-5214(00)80004-4

    Google Scholar 

  • Handley L L, Raven J A, 1992. The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant, Cell and Environment, 15(9): 965–985. doi: 10.1111/j.1365-3040.1992.tb01650.x

    Article  Google Scholar 

  • Henry H A L, Jefferies R L, 2003. Plant amino acid uptake, soluble N turnover and microbial N capture in soils of a grazed Arctic salt marsh. Journal of Ecology, 91(4): 627–636. doi: 10.1046/j.1365-2745.2003.00791.x

    Article  Google Scholar 

  • Hilton G M, Thompson D R, Sagar P M et al., 2006. A stable isotopic investigation into the causes of decline in a sub-Antarctic predator, the rockhopper penguin Eudyptes chrysocome. Global Change Biology, 12(4): 611–625. doi: 10.1111/j.1365-2486.2006.01130.x

    Article  Google Scholar 

  • Hungate B A, Holland E A, Jackson R B et al., 1997. The fate of carbon in grasslands under carbon dioxide enrichment. Nature, 388: 576–579.

    Article  Google Scholar 

  • Högberg P, 1997. Tansley review No. 95 15N natural abundance in soil-plant systems. New Phytologist, 137(2): 179–203. doi: 10.1046/j.1469-8137.1997.00808.x

    Article  Google Scholar 

  • Jordan M J, Nadelhoffer K J, Fry B, 1997. Nitrogen cycling in forest and grass ecosystems irrigated with 15N-enrihed wastewater. Ecological Application, 7(3): 864–881.

    Google Scholar 

  • Keeling C D, 1958. The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochimica et Cosmochimica Acta, 13(4): 322–334. doi: 10.1016/0016-7037 (58) 90033-4

    Article  Google Scholar 

  • Kirkham D, Bartholomew W, 1954. Equations for following nutrient transformations in soil, utilizing tracer date. Soil Science Society of America Proceedings, 18: 33–34.

    Article  Google Scholar 

  • Kohls S J, Kessel C Van, Baker D D et al., 1994. Assessment of N2 fixation and N cycling by Dryas along a chronosequence within the forelands of the Athabasca Glacier, Canada. Soil Biology and Biochemistry, 26(5): 623–632. doi: 10.1016/0038-0717(94)90251-8

    Article  Google Scholar 

  • Kritzberg E S, Cole J J, Pace M L et al., 2004. Autochthonous versus allochthonous carbon sources of bacteria: Results from whole-lake 13C addition experiments. Limnology and Oceanography, 49(2): 588–596.

    Article  Google Scholar 

  • Krupas V, 2003. Effects of atmospheric ammonia (NH3) on ter restrial vegetation: A review. Environmental Pollution, 124(2): 179–221. doi: 10.1016/S0269-7491(02)00434-7

    Article  Google Scholar 

  • Lavoie R A, Hebert C E, Rail J F et al., 2010. Trophic structure and mercury distribution in a Gulf of St. Lawrence (Canada) food web using stable isotope analysis. Science of the Total Environment, 408: 5529–5539. doi: 10.1016/j.scitotenv.2010.07.053

    Article  Google Scholar 

  • Lim S S, Choi W J, Kwak J H et al., 2007. Nitrogen and carbon isotope responses of Chinese cabbage and chrysanthemum to the application of liquid pig manure. Plant and Soil, 295(1–2): 67–77. doi: 10.1007/s11104-007-9262-0

    Article  Google Scholar 

  • Lin G, Ehleringer J R, Rygiewicz P T et al., 1999. Elevated CO2 and temperature impacts on different components of soil CO2 efflux in Douglas-fir terracosms. Global Change Biology, 5(2): 157–168. doi: 10.1046/j.1365-2486.1999.00211.x

    Article  Google Scholar 

  • Lin G, Rygiewicz P T, Ehleringer J R et al., 2001. Time-dependent responses of soil respiration components to elevated CO2 and temperature in experimental forest mesocosms. Plant and Soil, 229(2): 259–270. doi: 10.1023/A:1004 883221036

    Article  Google Scholar 

  • Lloyd J, Farquhar G D, 1994. 13C discrimination during CO2 assimilation by the terrestrial biosphere. Oecologia, 99: 201–215.

    Article  Google Scholar 

  • Lloyd J, Kruijt B, Hollinger D Y et al., 1996. Vegetation effects on the isotopic composition of atmospheric CO2 at local and regional scales: Theoretical aspects and a comparison between rain forest in Amazonia and a boreal forest in Siberia. Australian Journal of Plant Physiology, 23: 371–399.

    Article  Google Scholar 

  • Lund L J, Horne A J, Williams A E, 2000. Estimating denitrification in a large constructed wetland using stable nitrogen isotope ratios. Ecological Engineering, 14(1–2): 67–76. doi: 10.1016/S0925-8574(99)00020-8

    Google Scholar 

  • Magnusson W E, Araújo M C, Cintra R et al., 1999. Contributions of C3 and C4 plants to higher trophic levels in an Amazonian savanna. Oecologia, 119(1): 91–96. doi: 10.1007/PL00008821

    Google Scholar 

  • Martin B, Thbrston Y R, 1988. Stable carbon isotope composition (δ13C), water-use efficiency, and biomass productivity of Lycopersicon esculentum, L. pennellii and the F1 hybird. Plant Physiology, 88: 213–217. doi: 10.1023/A:1004708815973

    Article  Google Scholar 

  • Matheson F E, Nguyen M L, Cooper A B et al., 2002. Fate of 15N-nitrate in unplanted, planted and harvested riparian wetland soil microcosms. Ecological Engineering, 19(4): 249–264.

    Article  Google Scholar 

  • Matsushima M, Chang S X, 2007. Nitrogen and water availabilities and competitiveness of bluejoint: Spruce growth and foliar carbon-13 and nitrogen-15 abundance. Soil Science Society of America Journal, 71(5): 1547–1554. doi: 10.2136/sssaj2006.0385

    Article  Google Scholar 

  • McKinney R A, Charpentier M A, Wigand C et al., 2001. Ribbed mussel nitrogen isotope signature reflect nitrogen sources in coastal salt marshes. Ecological Applications, 11(1): 203–214. doi: 10.1890/1051-0761 (2001)011[0203:RMNISR]2.0.CO;2

    Article  Google Scholar 

  • Melillo J M, Aber J D, Muratore J F, 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63(3): 621–626. doi: 10.2307/1936780

    Article  Google Scholar 

  • Michelsen A, Schmidt I K, Jonasson S et al., 1996. Leaf 15N abundance of subartic plants provides field evidence that ericoid, ectomycorrhizal and non-and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia, 105(1): 53–63. doi:10.1007/BF00328791

    Article  Google Scholar 

  • Middelburg J J, Nieuwenhuize J, 1998. Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde Estuary. Marine Chemistry, 60(3—4): 217–225. doi: 10.1016/S0304-4203(97)00104-7

    Article  Google Scholar 

  • Moncreiff C A, Sullivan M J, 2001. Trophic importance of epiphytic algae in subtropical seagrass beds: Evidence from multiple stable isotope analyses. Marine Ecology Progress Series, 215: 93–106.

    Article  Google Scholar 

  • Nadelhoffer K J, Fry B, 1988. Controls on natural nitrogen-15 and carbon-13 abundances in forests soil organic matter. Soil Science Society of America Journal, 52: 1633–1640.

    Article  Google Scholar 

  • Nordbakken J F, Ohlson M, Högber P, 2003. Boreal bog plants: Nitrogen sources and uptake of recently deposited nitrogen. Enveronmental Pollution, 126(2): 191–200. doi: 10.1016/S0269-7491(03)00194-5

    Article  Google Scholar 

  • O’Leary M H, 1981. Carbon isotope fractionation in plants. Phytochemistry, 20(4): 553–567.

    Article  Google Scholar 

  • Ometto J P H B, Flanagan L B, Martinelli L A et al., 2002. Carbon isotope discrimination in forest and pasture ecosystems of the Amazon Basin, Brazil. Global Biogeochemical Cycles, 16(4): 1109. doi: 10.1029/2001GB001462, 2002

    Article  Google Scholar 

  • Pace M L, Cole J J, Carpenter S R et al., 2004. Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature, 427: 240–243. doi: 10.1038/nature02227

    Article  Google Scholar 

  • Panek J A, Waring R H, 1997. Stable carbon isotopes as indicators of limitations to forest growth imposed by climate stress. Ecological Applications, 7(3): 854–863.

    Article  Google Scholar 

  • Park P, Epstein S, 1961. Metabolic fractionation of 13C and 12C in plants. Plant Physiology, 36: 133–138.

    Article  Google Scholar 

  • Peñuelas J, Estiarte M, 1997. Trends in plant carbon concentration and plant demand for N throughout this century. Oecologia, 109(1): 69–73. doi: 10.1007/s004420050059

    Article  Google Scholar 

  • Peterson B J, Fry B, 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics, 18: 293–320.

    Article  Google Scholar 

  • Peterson B J, Howarth R W, Garritt R H, 1985. Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science, 227: 1361–1363.

    Article  Google Scholar 

  • Phillips D L, Gregg J W, 2003. Source partitioning using stable isotopes: Coping with too many sources. Oecologia, 136: 261–269. doi: 10.1007/s00442-003-1218-3

    Article  Google Scholar 

  • Polley H W, Johnson H B, Marino B D et al., 1993. Increase in C3 plant water-use efficiency and biomass over glacial to present CO2 concentrations. Nature, 361: 61–63.

    Article  Google Scholar 

  • Post D M, 2002. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology, 83(3): 703–718. doi: 10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2

    Article  Google Scholar 

  • Quinn M R, Feng X H, Folt C L et al., 2003. Analyzing trophic transfer of metals in stream food webs using nitrogen isotopes. The Science of the Total Environment, 317(1–3): 73–89. doi: 10.1016/S0048-9697(02)00615-0

    Google Scholar 

  • Ramsay M A, Hobson K A, 1991. Polar bears make little use of terrestrial food web: Evidence from stable carbon isotope analysis. Oecologia, 86(4): 598–600. doi: 10.1007/BF00318328

    Article  Google Scholar 

  • Rückauf U, Jürgen A, Rolf R et al., 2004. Nitrate removal from drained and reflooded fen soils affected by soil N transformation processes and plant uptake. Soil Biology and Biochemistry, 36(1): 77–90. doi: 10.1016/j.soilbio.2003.08.021

    Article  Google Scholar 

  • Saurer M, Borella S, Schweingruber F et al., 1997. Stable carbon isotopes in tree rings of beech: Climatic versus siterelated influences. Trees, 11(5): 291–297. doi: 10.1007/s004680050087

    Article  Google Scholar 

  • Saurer M, Sigenthaler U, Schweingruber F, 1995. The climatecarbon isotope relationship in tree rings and the significance of site conditions. Tellus, 47(3): 320–330. doi: 10.1034/j.1600-0889.47.issue3.4.x

    Article  Google Scholar 

  • Shearer G, Kohl D H, 1986. N2 fixation in field settings: Estimation based on natural 15N abundance. Australian Journal of Plant Physiology, 13: 699–756.

    Google Scholar 

  • Shearer G, Kohl D H, 1993. Natural abundance of 15N: Fractional contribution of tow sources to a common sink and use of isotope discrimination. In: Knowles R et al. (eds.). Nitrogen Isotope Techniques. San Diego: Academic Press, 89–125.

    Google Scholar 

  • Simard S W, Perry D A, Jones M D et al., 1997. Net transfer of carbon between ectomycorrhizal tree species in the field. Nature, 388: 579–582.

    Article  Google Scholar 

  • Smith B N, Epstein S, 1971. Two categories of 13C/12C ratios for higher plants. Plant Physiology, 47: 380–384.

    Article  Google Scholar 

  • Smith S D, Osmond C B, 1987. Stem photosynthesis in a desert ephemeral Eriogonum inflatum, morphology, stomatal conductance and water-use efficiency in field population. Oecologia, 72(4): 533–541.

    Article  Google Scholar 

  • Stewart D P C, Metherell A K, 1999. Carbon (13C) uptake and allocation in pasture plants following field pulse-labeling. Plant and Soil, 210(1): 61–73. doi: 10.1023/A:1004668910787

    Article  Google Scholar 

  • Sternberg L S L, 1989. A model to estimate carbon dioxide recycling in forests using 13C/12C ratios and concentrations of ambient carbon dioxide. Agricultural and Forest Meteorology, 48(1–2): 163–173.

    Article  Google Scholar 

  • Stock W D, Wien K T, Baker A C, 1995. Impacts of invading N2-fixing Acacia species on pattern of nutrient cycling in two cape ecosystems: Evidence from soil incubation studies and 15N natural abundance values. Oecologia, 101(3): 375–382. doi: 10.1007/BF00328825

    Article  Google Scholar 

  • Sun Z G, Liu J S, 2008. Distribution and fate of anthropogenic nitrogen in the Calamagrostis angustifolia wetland ecosystem of Sanjiang Plain, Northeast China. Journal of Integrative Plant Biology, 50(4): 402–414. doi: 10.1111/j.1744-7909.2007.00627.x

    Article  Google Scholar 

  • Swanson H K, Johnston T A, Leggett W C et al., 2003. Trophic positions, and mercury bioaccumulation in rainbow smelt (Osmerus mordax), and native forage fishes in northwestern Ontario Lakes. Ecosystems, 6(3): 289–299. doi: 10.1007/s10021-002-0205-6

    Article  Google Scholar 

  • Tan X, Kabzems R, Chang S X, 2006. Response of forest vegetation and foliar δ13C and δ15N to soil compaction, and forest floor removal in a boreal aspen forest. Forest Ecology and Management, 222(1–3): 450–458. doi: 10.1016/j.foreco.2005.10.051

    Article  Google Scholar 

  • Tang Haiping, Liu Shurun, 2001. The list of C4 plants in Nei-Mongol Area. Acta Scientiarum Naturalium Universitatis Neimongol, 32(4): 431–438. (in Chinese)

    Google Scholar 

  • Thompson R B, 1996. Pulse-labelling a cover crop with 13C to follow its decomposition in soil under field conditions. Plant and Soil, 180(1): 49–55. doi: 10.1007/BF00015410

    Article  Google Scholar 

  • Tieszen L L, Reed B C, Bliss N B et al., 1997. NDVI, C3 and C4 production, and distribution in Great Plain grassland land cover classes. Ecological Applications, 7(1): 59–78.

    Google Scholar 

  • Tietema A, Emmett B A, Gundersen P et al., 1998. The fate of 15N-labelled nitrogen deposition in coniferous forest ecosystems. Forest Ecology and Management, 101(1–3): 19–27. doi: 10.1016/S0378-1127(97)00123-0

    Article  Google Scholar 

  • Van Kessel C, Farrell R E, Roskoski J P et al., 1994. Recycling of the naturally-occrring 15N in an established stand of Leucaena leucocephala. Soil Biology and Biochemistry, 26(6): 757–762. doi: 10.1016/0038-0717(94)90269-0

    Article  Google Scholar 

  • Vander Zanden M J, Fetzer W W, 2007. Global patterns of aquatic food chain length. Oikos, 116(8): 1378–1388. doi: 10.1111/j.2007.0030-1299.16036.x

    Article  Google Scholar 

  • Vitousek P M, Aber J D, 1997. Human alteration of the global nitrogen cycle: Sources and consequences. Ecological Application, 7(3): 736–743. doi: 10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2

    Google Scholar 

  • Wang Luo, Lu Houyuan, Wu Naiqin et al., 2003. Altitudinal trends of stable carbon isotope composition for Poeceae in Qinghai-Xizang plateau. Quatemary Sciences, 23(5): 573–580. (in Chinese)

    Google Scholar 

  • Williams D G, Gempko V, Fravolini A et al., 2001. Carbon isotope discrimination by Sorghum biocolor under CO2 enrichment and drought. New Phytologist, 150(2): 285–293. doi: 10.1046/j.1469-8137.2001.00093.x

    Article  Google Scholar 

  • Winter K, Holtum J A M, Edwards G E et al., 1982. Effect of low relative humidity on δ13C value in two C3 grasses and in Panicum milioides, a C3–C4 intermediate species. Journal of Experimental Botany, 33(1): 88–91.

    Article  Google Scholar 

  • Wu Ying, Zhang Jing, Zhang Zaifeng et al., 2002. Seasonal variability of stable carbon and nitrogen isotope of suspended particulate matter in the Changjiang River. Oceanologia Et Limnologia Sinica, 33(5): 546–552. (in Chinese)

    Google Scholar 

  • Yin Lijuan, Wang Ping, 1997. Distribution of C3 and C4 photosynthetic pathways of plants on the steppe of Northeastern China. Acta Ecologica Sinica, 17: 112–123. (in Chinese)

    Google Scholar 

  • Yu Guirui, Wang Shaoqiang, Chen Panqin et al., 2005. Isotope tracer approaches in soil organic carbon cycle research. Advances in Earth Science, 20(5): 568–577. (in Chinese)

    Google Scholar 

  • Zimmerman J K, Ehleringer J R, 1990. Carbon isotope ratios are correlated with irradiance levels in the Panananian orchid Catasetum viridiflaum. Oecologia, 83(2): 247–249.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigao Sun.

Additional information

Foundation item: Under the auspices of Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-223), National Natural Science Foundation of China (No. 40803023), Key Program of Natural Science Foundation of Shandong Province (No. ZR2010DZ001), Talents Foundation of Chinese Academy of Sciences (No. AJ0809BX-036)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Z., Mou, X., Li, X. et al. Application of stable isotope techniques in studies of carbon and nitrogen biogeochemical cycles of ecosystem. Chin. Geogr. Sci. 21, 129–148 (2011). https://doi.org/10.1007/s11769-011-0453-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-011-0453-5

Keywords

Navigation