Skip to main content
Log in

An improved method for modeling spatial distribution of δD in surface snow over Antarctic ice sheet

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Using the recent compilation of the isotopic composition data of surface snow of Antarctic ice sheet, we proposed an improved interpolation method of δD, which utilizes geographical factors (i.e., latitude and altitude) as the primary predictors and incorporates inverse distance weighting (IDW) technique. The method was applied to a high-resolution digital elevation model (DEM) to produce a grid map of multi-year mean δD values with 1km spatial resolution for Antarctica. The mean absolute deviation between observed and estimated data in the map is about 5.4‰, and the standard deviation is 9‰. The resulting δD pattern resembles well known characteristics such as the depletion of the heavy isotopes with increasing latitude and distance from coast line, but also reveals the complex topographic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bowen G J, Revenaugh J, 2003. Interpolating the isotopic composition of modern meteoric precipitation. Water Resources Research, 39(10): 1299. DOI: 10D1029/2003 WR002086.

    Article  Google Scholar 

  • Bowen G J, Wilkinson B H, 2002. Spatial distribution of δ18O in meteoric precipitation. Geology, 30(4): 315–318.

    Article  Google Scholar 

  • Ciais P, Jouzel J, 1994. Deuterium and oxygen 18 in precipitation: Isotopic model, including mixed cloud processes. Journal of Geophysical Research, 99(D8): 16793–16803.

    Article  Google Scholar 

  • Cuffey K M, Clow G D, Alley R B et al., 1995. Large Arctic temperature change at the Wisconsin-Holocene glacial transition. Science, 270: 455–458.

    Article  Google Scholar 

  • Dansgaard W, 1964. Stable isotopes in precipitation. Tellus, 16: 436–468.

    Article  Google Scholar 

  • Ekaykin A A, Lipenkov V Y, Barkov N I et al., 2002. Spatial and temporal variability in isotope composition of recent snow in the vicinity of Vostok Station: implications for ice-core record interpretation. Annals of Glaciology, 35: 181–186.

    Article  Google Scholar 

  • EPICA (European Project of Ice Cores in Antarctica) Community Members, 2004. Eight glacial cycles from an Antarctic ice core. Nature, 429(6992): 623–628.

    Article  Google Scholar 

  • Graf W, Oerter, Reinwarth H O et al., 2002. Stable isotope records from Dronning Maud Land, Antarctica. Annals of Glaciology, 35: 195–201.

    Article  Google Scholar 

  • Fisher D A, 1991. Remarks on the deuterium excess in precipitation in cold regions. Tellus (Series B), 43: 401–407.

    Article  Google Scholar 

  • GRIP (Greenland Ice-core Project) Members, 1993. Climate instability during the last interglacial period recorded in the GRIP ice core. Nature, 364(6434): 203–207.

    Article  Google Scholar 

  • Helsen M M, van de Wal R S W, van den Broeke M R, 2007. The isotopic composition of present-day Antarctic snow in a Lagrangian atmospheric simulation. Journal of Climate, 20:739–756.

    Article  Google Scholar 

  • Johnsen S J, Dahl-Jensen D, Dansgaard W et al., 1995. Greenland palaeotemperatures derived from GRIP bore hole temperature and ice core isotope profiles. Tellus (Series B), 47: 624–629.

    Article  Google Scholar 

  • Jouzel J, Alley R B, Cuffey C M et al., 1997. Validity of the temperature reconstruction from water isotopes in ice cores. Journal of Geophysical Research, 102(C12): 26471–26487.

    Article  Google Scholar 

  • Jouzel J, Vimeux F, Caillon N et al., 2003. Magnitude of isotope/temperature scaling for interpretation of central Antarctic ice cores. Journal of Geophysical Research, 108(D12): 4361. DOI: 10.1029/2002JD002677.

    Article  Google Scholar 

  • Jouzel J, Masson-Delmotte V, Cattani O et al., 2007. Orbital and millennial Antarctic climate variability over the past 800000 years. Science, 317: 793–796.

    Article  Google Scholar 

  • Lhomme N, Clarke G K C, Ritz C, 2005. Global budget of water isotopes inferred from polar ice sheets. Geophysical Research Letters, 32: L20502. DOI: 10.1029/2003JD004228.

    Article  Google Scholar 

  • Liu H X, Jezek K C, Li B et al., 2001. Radarsat Antarctic Mapping Project Digital Elevation Model Version 2. Boulder, Colorado: National Snow and Ice Data Center.

    Google Scholar 

  • Masson-Delmotte V, Delmotte M, Morgan V et al., 2003. Recent southern Indian Ocean climate variability inferred from a Law Dome ice core: New insights for the interpretation of coastal Antarctic isotopic records. Climate Dynamics, 21(2): 153–166.

    Article  Google Scholar 

  • Masson-Delmotte V, Hou S, Ekaykin A et al., 2008. A review of Antarctic surface snow isotopic composition: observations, atmospheric circulation and isotopic modeling. Journal of Climate, 21: 3359–3387. DOI: 10.1175/2007JCLI2139.1

    Article  Google Scholar 

  • Masson-Delmotte V, Jouzel J, Landais A et al., 2005. GRIP deuterium excess reveals rapid and orbital-scale changes in Greenland moisture origin. Science, 309: 119–121.

    Article  Google Scholar 

  • NGICP (North Greenland Ice Core Project) Members, 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431: 147–151.

    Article  Google Scholar 

  • Noone D, Simmonds I, 2002. Associations between δ18O of water and climate parameters in a simulation of atmospheric circula tion for 1979–95. Journal of Climate, 15: 3150–3169. DOI: 10.1175/1520-0442(2002)015

    Article  Google Scholar 

  • Noone D, Turner J, Mulvaney R, 1999. Atmospheric signals and characteristics of accumulation on Dronning Maud Land, Antarctica. Journal of Geophysical Research, 104(D16): 19191–19211.

    Article  Google Scholar 

  • Robin G, 1983. The climatic record from ice cores. In: Robin G (ed). The Climatic Record in Polar Ice Sheets. New York: Cambridge Univ. Press, 180–195

    Google Scholar 

  • Rozanski K, Araguas-Araguas L, Gonfiantini R, 1993. Isotopic patterns in modern global precipitation. In: Swart P et al. (eds.). Climate Change in Continental Isotopic Records. Washington, DC: American Geophysical Union, 1–36.

    Google Scholar 

  • Salamatin A N, Ekaykin A A, Lipenkov V Y, 2004. Modelling isotopic composition in precipitation in Central Antarctica. Mater. Glyatsiol. Issled., 97: 24–34.

    Google Scholar 

  • Schmidt G A, Hoffmann G, Shindell D T et al., 2005. Modeling atmospheric stable water isotopes and the potential for constraining cloud processes and stratosphere-troposphere water exchange. Journal of Geophysical Research, 110: D21314. DOI: 10.1029/2005JD005790.

    Article  Google Scholar 

  • Schneider D P, Steig E J, Van Ommen T D et al., 2006. Antarctic temperatures over the past two centuries from ice cores. Geophysical Research Letters, 33: L16707. DOI: 10.1029/2006GL 027057.

    Article  Google Scholar 

  • Schlosser E, Oerter H, 2002. Seasonal variation of accumulation and the isotope record in ice cores: A study with surface snow samples and firn cores from Neumayer station, Antarctica. Annals of Glaciology, 35: 97–101.

    Article  Google Scholar 

  • Van Lipzig N P M, Van Meijgaard E, Oerlemans J, 2002. The effect of temporal variations in the surface mass balance and temperature inversion strength on the interpretation of ice-core signals. Journal of Glaciology, 48(163): 611–621.

    Article  Google Scholar 

  • Werner M, Heimann M, 2002. Modeling interannual variability of water isotopes in Greenland and Antarctica. Journal of Geophysical Research, 107: 4001. DOI: 10.1029/2001JD900253.

    Article  Google Scholar 

  • Yurtsever Y, Gat Jr, 1981. Atmospheric waters. In: Gat Jr et al. (eds.). Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle. Vienna: International Atomic Energy Association, 103–139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yetang Wang.

Additional information

Foundation item: Under the auspices of National Natural Science Foundation of China (No. 40825017, 40576001); 100 Talents Project of Chinese Academy of Sciences; National Key Technologies R&D Program of China (No. 2006BAB18B01)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Hou, S., Grigholm, B. et al. An improved method for modeling spatial distribution of δD in surface snow over Antarctic ice sheet. Chin. Geogr. Sci. 19, 120–125 (2009). https://doi.org/10.1007/s11769-009-0120-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-009-0120-2

Keywords

Navigation