Skip to main content
Log in

On the optimality of uniform velocity–deceleration separation scheme for tethered satellite systems

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

For mitigating the libration angle fluctuation of the tethered satellite system, this paper discusses how to make the uniform velocity–deceleration separation scheme achieve the best effect. First, a judgment condition is established to determine the tether state by comparing the tether length and the relative distance of the sub-satellite and the parent satellite. Based on the tethered satellite system dynamics equation and Clohessy–Wiltshire equation, dynamic models are given for four cases of tether states. Second, the influence of the uniform velocity–deceleration separation scheme on the libration angle is analyzed by taking the libration angle at the separation ending time and the mean absolute value of the libration angle as index functions. Then, the optimality problem of the uniform velocity–deceleration separation scheme is formulated as an optimization problem with constraints, and an approximate solution algorithm is given by combining the back propagation neural network and Newton–Raphson method of multiple initial values. Finally, the effectiveness of the proposed method is verified by a numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available upon request from the corresponding author guojin@ustb.edu.cn.

References

  1. Zhu, R., Misra, A., & Modi, V. (1994). Dynamics and control of coupled orbital and librational motion of tethered satellite systems. The Journal of the Astronautical Sciences, 42(3), 319–342.

    Google Scholar 

  2. Giuseppi, A., Delli Priscoli, F., & Pietrabissa, A. (2022). Robust and fault-tolerant spacecraft attitude control based on an extended-observer design. Control Theory and Technology, 20, 323–337. https://doi.org/10.1007/s11768-022-00101-2

    Article  MathSciNet  Google Scholar 

  3. Haghighi, R., & Pang, C. (2016). Energy-efficient control of nanosatellites during distributed region formation flying. Control Theory and Technology, 14, 263–278. https://doi.org/10.1007/s11768-016-6075-9

    Article  MathSciNet  Google Scholar 

  4. Tan, S., Guo, J., Zhao, Y., & Zhang, J. (2021). Adaptive control with saturation-constrainted observations for drag-free satellites-a set-valued identification approach. Science China Information Sciences, 64(10), 202202. https://doi.org/10.1007/s11432-020-3145-0

    Article  MathSciNet  Google Scholar 

  5. Yang, F., Tan, S., Xue, W., Guo, J., & Zhao, Y. (2020). Extended state filtering with saturation-constrainted observations and active disturbance rejection control of position and attitude for drag-free satellites. Acta Automatica Sinica, 46(11), 2337–2349. https://doi.org/10.16383/j.aas.c190515

    Article  Google Scholar 

  6. Hu, Y., Guo, J., Meng, W., Liu, G., & Xue, W. (2022). Longitudinal control for balloon-borne launched solar powered UAVs in near-space. Journal of Systems Science and Complexity, 35, 802–819. https://doi.org/10.1007/s11424-022-1302-6

    Article  Google Scholar 

  7. Lu, K., Liu, H., Zeng, L., Wang, Z., Zhang, Z., & An, J. (2023). Applications and prospects of artificial intelligence in covert satellite communication: a review. Science China Information Sciences, 66(2), 121301. https://doi.org/10.1007/s11432-022-3566-4

    Article  Google Scholar 

  8. Johnson, L., Gilchrist, B., Estes, R., & Lorenzini, E. (1999). Overview of future NASA tether applications. Advances in Space Research, 24(8), 1055–1063. https://doi.org/10.1016/S0273-1177(99)00553-0

    Article  Google Scholar 

  9. Sanmartín, J., Martinez-Sanchez, M., & Ahedo, E. (1993). Bare wire anodes for electrodynamic tethers. Journal of Propulsion and Power, 9(3), 353–360. https://doi.org/10.2514/3.23629

    Article  Google Scholar 

  10. Fuhrhop, K. (2007). Theory and experimental evaluation of electrodynamic tether systems and related technologies. Ph.D. thesis. Ann Arbor, MI, USA: University of Michigan. https://hdl.handle.net/2027.42/57663.

  11. Avanzini, G., & Fedi, M. (2013). Refined dynamical analysis of multi-tethered satellite formations. Acta Astronautica, 84, 36–48. https://doi.org/10.1016/j.actaastro.2012.10.031

    Article  Google Scholar 

  12. Colombo, G., Gaposchkin, E., Grossi, M., & Weiffenbach, G. (1975). The skyhook: A shuttle-borne tool for low-orbital-altitude research. Meccanica, 10, 3–20. https://doi.org/10.1007/BF02148280

    Article  Google Scholar 

  13. Bilén, S., Gilchrist, B., Bonifazi, C., & Melchioni, E. (1995). Transient response of an electrodynamic tether system in the ionosphere: TSS-1 first results. Radio Science, 30(5), 1519–1535. https://doi.org/10.1029/95RS01889

    Article  Google Scholar 

  14. Hill, M., Calhoun, R., Fernando, H., & Wieser, A. (2010). Coplanar doppler lidar retrieval of rotors from T-REX. Journal of the Atmospheric Sciences, 67(3), 713–729. https://doi.org/10.1175/2009JAS3016.1

    Article  Google Scholar 

  15. Iki, K., Kawamoto, S., Ohkawa, Y., Okumura, T., Kawashima, K., Takai, M., Izawa, K., Matsumoto, K., Suzuki, S., Katayama, Y., Horikawa, Y., & Inoue, K. (2016). Expected on-orbit tether deployment dynamics on the KITE mission. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 14(30), 9–18. https://doi.org/10.2322/tastj.14.Pr_9

    Article  Google Scholar 

  16. Cartmell, M., & Mckenzie, D. (2008). A review of space tether research. Progress in Aerospace Sciences, 44(1), 1–21. https://doi.org/10.1016/j.paerosci.2007.08.002

    Article  Google Scholar 

  17. Chen, Y., Huang, R., He, L., Ren, X., & Zheng, B. (2014). Dynamical modelling and control of space tethers: a review of space tether research. Nonlinear Dynamics, 77(4), 1077–1099. https://doi.org/10.1007/s11071-014-1390-5

    Article  Google Scholar 

  18. Beletskii, V., & Pivovarov, M. (2000). The effect of the atmosphere on the attitude motion of a dumb-bell-shaped artificial satellite. Journal of Applied Mathematics and Mechanics, 64(5), 691–700. https://doi.org/10.1016/S0021-8928(00)00097-6

    Article  Google Scholar 

  19. Burov, A., & Kosenko, I. (2015). Planar oscillations of a dumb-bell of a variable length in a central field of Newtonian attraction. exact approach. International Journal of Non-Linear Mechanics, 72, 1–5. https://doi.org/10.1016/j.ijnonlinmec.2015.01.011

    Article  Google Scholar 

  20. Yu, B., Dai, P., & Jin, D. (2018). Modeling and dynamics of a bare tape-shaped tethered satellite system. Aerospace Science and Technology, 79, 288–296. https://doi.org/10.1016/j.ast.2018.05.046

    Article  Google Scholar 

  21. Liu, C., Chen, S., Guo, Y., & Wang, W. (2023). Robust adaptive control for rotational deployment of an underactuated tethered satellite system. Acta Astronautica, 203, 65–77. https://doi.org/10.1016/j.actaastro.2022.11.025

    Article  Google Scholar 

  22. Chu, Z., Di, J., & Cui, J. (2018). Hybrid tension control method for tethered satellite systems during large tumbling space debris removal. Acta Astronautica, 152, 611–623. https://doi.org/10.1016/j.actaastro.2018.09.016

    Article  Google Scholar 

  23. Bourabah, D., & Botta, E. (2022). Length-rate control for libration reduction during retraction of tethered satellite systems. Acta Astronautica, 201, 152–163. https://doi.org/10.1016/j.actaastro.2022.08.037

    Article  Google Scholar 

  24. Su, B., Zhang, F., & Huang, P. (2021). Robust control of triangular tethered satellite formation with unmeasured velocities. Acta Astronautica, 186, 190–202. https://doi.org/10.1016/j.actaastro.2021.04.045

    Article  Google Scholar 

  25. Shan, M., & Shi, L. (2022). Velocity-based detumbling strategy for a post-capture tethered net system. Advances in Space Research, 70(5), 1336–1350. https://doi.org/10.1016/j.asr.2022.06.012

    Article  Google Scholar 

  26. Vadali, S. (1991). Feedback tether deployment and retrieval. Journal of Guidance, Control, and Dynamics, 14(2), 469–470. https://doi.org/10.2514/3.20662

    Article  Google Scholar 

  27. Wen, H., Zhu, Z., Jin, D., & Hu, H. (2016). Space tether deployment control with explicit tension constraint and saturation function. Journal of Guidance, Control, and Dynamics, 39(4), 916–921. https://doi.org/10.2514/1.G001356

    Article  Google Scholar 

  28. Fujii, H., & Ishijima, S. (1989). Mission function control for deployment and retrieval of a subsatellite. Journal of Guidance, Control and Dynamics, 12(2), 243–247. https://doi.org/10.2514/3.20397

    Article  Google Scholar 

  29. Li, X., Sun, G., Han, S., & Shao, X. (2021). Fractional-order nonsingular terminal sliding mode tension control for the deployment of space tethered satellite. IEEE Transactions on Aerospace and Electronic Systems, 57(5), 2759–2770. https://doi.org/10.1109/TAES.2021.3061815

    Article  Google Scholar 

  30. Clohessy, W., & Wiltshire, R. (1960). Terminal guidance system for satellite rendezvous. Journal of the Aerospace Science, 27, 653–674. https://doi.org/10.2514/8.8704

    Article  Google Scholar 

  31. Tan, D., & Chen, Z. (2012). On a general formula of fourth order Runge–Kutta method. Journal of Mathematical Science and Mathematics Education, 7(2), 1–10.

    Google Scholar 

  32. Butcher, J. (1996). A history of Runge–Kutta methods. Applied Numerical Mathematics, 20(3), 247–260. https://doi.org/10.1016/0168-9274(95)00108-5

    Article  MathSciNet  Google Scholar 

  33. Guo, J., Jia, R., Su, R., & Zhao, Y. (2023). Identification of fir systems with binary-valued observations against data tampering attacks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 53(9), 5861–5873. https://doi.org/10.1109/TSMC.2023.3276352

    Article  Google Scholar 

  34. Guo, J., & Diao, J. (2020). Prediction-based event-triggered identification of quantized input fir systems with quantized output observations. Science China Information Sciences, 63, 112201–111220112. https://doi.org/10.1007/s11432-018-9845-6

    Article  MathSciNet  Google Scholar 

  35. Guo, J., Wang, X., Xue, W., & Zhao, Y. (2021). System identification with binary-valued observations under data tampering attacks. IEEE Transactions on Automatic Control, 66(8), 3825–3832. https://doi.org/10.1109/TAC.2020.3029325

    Article  MathSciNet  Google Scholar 

  36. Xie, Y., & Ma, C. (2011). A smoothing Levenberg–Marquardt algorithm for solving a class of stochastic linear complementarity problem. Applied Mathematics and Computation, 217(9), 4459–4472. https://doi.org/10.1016/j.amc.2010.10.049

    Article  MathSciNet  Google Scholar 

  37. Zhang, Y., Jiang, X., Bai, Z., Guo, J., & Wei, C. (2022). Dynamics and rebound behavior analysis of flexible tethered satellite system in deployment and station-keeping phases. Defence Technology, 18(3), 509–523. https://doi.org/10.1016/j.dt.2021.04.007

    Article  Google Scholar 

  38. Luo, L., Li, A., & Wang, C. (2014). Simulation analysis of orbital parameters of small satellite launching by space tether system. In: Proceedings of the 33rd Chinese Control Conference, pp. 6398–6402. https://doi.org/10.1109/ChiCC.2014.6896042.

  39. Ji, Z., & Shi, G. (2023). Adaptive neural dynamics-based speed control strategy for stable retrieval of tethered satellite system. Advances in Space Research, 71(12), 4987–4994. https://doi.org/10.1016/j.asr.2023.01.061

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Guo.

Ethics declarations

Conflict of interest

The authors declare that there is no competing financial interest or personal relationship that could have appeared to influence the work reported in this paper.

Additional information

This research was supported by the National Key R &D Program of China (2018YFA0703800), the National Natural Science Foundation of China (62173030) and the Beijing Natural Science Foundation (4222050).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, P., Zhang, JF., Tan, S. et al. On the optimality of uniform velocity–deceleration separation scheme for tethered satellite systems. Control Theory Technol. (2024). https://doi.org/10.1007/s11768-024-00221-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11768-024-00221-x

Keywords

Navigation