Skip to main content
Log in

Mathematical modelling of ball and plate system with experimental and correlation function-based model validation

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

The ball and plate system is an inherently nonlinear under actuated benchmark system used for validating the performance of various control schemes. A mathematical model depicting the dynamics close to that of the system is very much required for such a test bed. In this correspondence, the complete nonlinear model, a simplified nonlinear model, and a linearized model of the ball and plate system are developed. The system comprises a ball and plate mechanism and a rotary servo unit. The ball and plate mechanism is modelled using the Euler–Lagrange method, whereas the rotary servo subsystem is modelled from the first principles. The nonlinear model of the combined system is developed by including the dynamics of the servo motor with gear and rolling resistance between the ball and the plate. The simplified nonlinear model of the system is obtained with suitable assumptions. The model is linearized around the operating point using the Jacobian. The validity of the developed models is investigated through correlation function analysis. The open-loop response of the three models, viz., nonlinear, simplified nonlinear, and linearized models, is analyzed in the MATLAB/Simulink platform. Since the open-loop system is unstable, the experimental validation of the model is performed with a double-loop PSO (particle swarm optimization) PID control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The data supporting the findings of this study are available within the article.

References

  1. Awtar, S., Bernard, C., Boklund, N., Master, A., Ueda, D., & Craig, K. (2002). Mechatronic design of a ball-on-plate balancing system. Mechatronics, 12(2), 217–228. https://doi.org/10.1016/S0957-4158(01)00062-9

    Article  Google Scholar 

  2. Yuan, D., & Zhang, Z. (2010). Modelling and control scheme of the ball plate trajectory-tracking pneumatic system with a touch screen and a rotary cylinder. IET Control Theory and Applications, 4(4), 573–589. https://doi.org/10.1049/iet-cta.2008.0540

    Article  Google Scholar 

  3. Chang, Y. H., Chan, W. S., & Chang, C. W. (2012). TS fuzzy model-based adaptive dynamic surface control for ball and beam system. IEEE Transactions on Industrial Electronics, 60(6), 2251–2263. https://doi.org/10.1109/TIE.2012.2192891

    Article  Google Scholar 

  4. Shojaei, K., & Chatraei, A. (2015). A saturating extension of an output feedback controller for internally damped Euler–Lagrange systems. Asian Journal of Control, 17(6), 2175–2187. https://doi.org/10.1002/asjc.1115

    Article  MathSciNet  Google Scholar 

  5. Sira-Ramirez, H., Aguilar-Orduna, M. A., & Gomez-Leon, B. C. (2021). Active disturbance rejection control of nonlinear SISO Lagrangian systems via endogenous injections and exogenous feedback for trajectory tracking. Control Theory and Technology, 19, 113–126. https://doi.org/10.1007/s11768-021-00033-3

    Article  MathSciNet  Google Scholar 

  6. Ho, M. T., Rizal, Y., & Chu, L. M. (2013). Visual servoing tracking control of a ball and plate system: design, implementation and experimental validation. International Journal of Advanced Robotic Systems, 10(7), 287. https://doi.org/10.5772/56525

    Article  Google Scholar 

  7. Wang, Y., Sun, M., Wang, Z., Liu, Z., & Chen, Z. (2014). A novel disturbance-observer based friction compensation scheme for ball and plate system. ISA Transactions, 53(2), 671–678. https://doi.org/10.1016/j.isatra.2013.11.011

    Article  Google Scholar 

  8. Bang, H., & Lee, Y. S. (2018). Implementation of a ball and plate control system using sliding mode control. IEEE Access, 6, 32401–32408. https://doi.org/10.1109/ACCESS.2018.2838544

    Article  Google Scholar 

  9. Bang, H., & Lee, Y. S. (2019). Embedded model predictive control for enhancing tracking performance of a ball-and-plate system. IEEE Access, 7, 39652–39659. https://doi.org/10.1109/ACCESS.2019.2907111

    Article  Google Scholar 

  10. Huang, W., Zhao, Y., Ye, Y., & Xie, W. (2019). State feedback control for stabilization of the ball and plate system. In 2019 Chinese Control Conference (CCC) (pp. 687–690). IEEE. https://doi.org/10.23919/ChiCC.2019.8866355

  11. Wang, A., Li, X., He, S., Cao, X., Jing, Y., & Chen, M. (2020). Command-filtering-based adaptive finite-time tracking control for ball and plate system. IFAC-PapersOnLine, 53(2), 6165–6170. https://doi.org/10.1016/j.ifacol.2020.12.1700

    Article  Google Scholar 

  12. Ma, J., Tao, H., & Huang, J. (2021). Observer integrated backstepping control for a ball and plate system. International Journal of Dynamics and Control, 9, 141–148. https://doi.org/10.1007/s40435-020-00629-8

    Article  Google Scholar 

  13. Li, J. F., & Xiang, F. H. (2021). RBF network adaptive sliding mode control of ball and plate system based on reaching law. Arabian Journal for Science and Engineering, 47, 9393–9404. https://doi.org/10.1007/s13369-021-06195-1

    Article  Google Scholar 

  14. Li, K., Ping, Z., Huang, Y., & Lu, J. G. (2021). A robust output regulation approach for trajectory tracking control of ball and plate system. In 2021 40th Chinese Control Conference (CCC) (pp. 617–622). IEEE. https://doi.org/10.23919/CCC52363.2021.9550278

  15. Singh, R., & Bhushan, B. (2022). Reinforcement learning-based model-free controller for feedback stabilization of robotic systems. IEEE Transactions on Neural Networks and Learning Systems, 34(10), 7059–7073. https://doi.org/10.1109/TNNLS.2021.3137548

    Article  MathSciNet  Google Scholar 

  16. Ahuar, R. L., Cedeno, A. L., Olivares, M., Aguero, J. C., & Silva, C. A. (2022). Model reference adaptive control for ball-and-plate system. In 2022 IEEE International Conference on Automation/XXV Congress of the Chilean Association of Automatic Control (ICA-ACCA) (pp. 1–6). IEEE. https://doi.org/10.1109/ICA-ACCA56767.2022.10006160

  17. Cardeira, C., Rodrigues, E., & Melicio, R. (2022). Prototype for position and trajectory control of a ball on plate using image sensor. In 2022 International Conference on Control, Automation and Diagnosis (ICCAD) (pp. 1–6). IEEE. https://doi.org/10.1109/ICCAD55197.2022.9853932

  18. Khanduja, N., & Bhushan, B. (2022). Hybrid state of matter search algorithm and its application to PID controller design for position control of ball balancer system. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 46(3), 785–804. https://doi.org/10.1007/s40998-022-00506-4

    Article  Google Scholar 

  19. Han, G. X., Meng, S. J., Huang, D. D., & Hu, Y. F. (2023). Zero steady-state error tracking control for ball and plate system based on principle of internal model. International Journal of Control, Automation and Systems, 21(3), 890–899. https://doi.org/10.1007/s12555-021-0138-5

    Article  Google Scholar 

  20. Schoukens, J., & Ljung, L. (2019). Nonlinear system identification: A user-oriented road map. IEEE Control Systems Magazine, 39(6), 28–99. https://doi.org/10.1109/MCS.2019.2938121

    Article  MathSciNet  Google Scholar 

  21. Qi, Z., Sun, Q., Ge, W., & He, Y. (2020). Nonlinear modeling of PEMFC based on fractional order subspace identification. Asian Journal of Control, 22(5), 1892–1900. https://doi.org/10.1002/asjc.2092

    Article  MathSciNet  Google Scholar 

  22. Agha, M., Kanistras, K., Rutherford, M. J., & Valavanis, K. P. (2020). Mathematical model derivation of an unmanned circulation control aerial vehicle UC\(^2\)AV. Control Theory and Technology, 18, 1–18. https://doi.org/10.1007/s11768-020-8151-4

    Article  Google Scholar 

  23. Gupta, S., Gupta, R., & Padhee, S. (2020). Stability and weighted sensitivity analysis of robust controller for heat exchanger. Control Theory and Technology, 18, 56–71. https://doi.org/10.1007/s11768-020-9136-z

    Article  MathSciNet  Google Scholar 

  24. Bagua, H., Hafaifa, A., Iratni, A., & Guemana, M. (2021). Model variables identification of a gas turbine using a subspace approach based on input/output data measurements. Control Theory and Technology, 19, 183–196. https://doi.org/10.1007/s11768-020-00005-z

    Article  Google Scholar 

  25. Chavan, S. L., & Talange, D. B. (2018). System identification black box approach for modeling performance of PEM fuel cell. Journal of Energy Storage, 18, 327–332. https://doi.org/10.1016/j.est.2018.05.014

    Article  Google Scholar 

  26. Zhang, L. F., Zhu, Q. M., & Longden, A. (2008). A correlation-test-based validation procedure for identified neural networks. IEEE Transactions on Neural Networks, 20(1), 1–13. https://doi.org/10.1109/TNN.2008.2003223

    Article  Google Scholar 

  27. Zhang, L. F., Zhu, Q. M., & Longden, A. (2005). Nonlinear model validation using novel correlation tests. In 2005 IEEE International Conference on Systems, Man and Cybernetics (Vol. 3, pp. 2879–2884). IEEE. https://doi.org/10.1109/ICSMC.2005.1571587

  28. Kassem, A., Haddad, H., & Albitar, C. (2015). Comparison between different methods of control of ball and plate system with 6dof Stewart platform. IFAC-PapersOnLine, 48(11), 47–52. https://doi.org/10.1016/j.ifacol.2015.09.158

    Article  Google Scholar 

  29. Sanchez, I. J., D’Jorge, A., Limache, A. C., Gonzalez, A. H., & Ferramosca, A. (2023). Tracking periodic parametric references using model predictive control. International Journal of Robust and Nonlinear Control, 33(13), 7452–7470. https://doi.org/10.1002/rnc.6755

    Article  MathSciNet  Google Scholar 

  30. Singh, R., & Bhushan, B. (2022). Adaptive control using stochastic approach for unknown but bounded disturbances and its application in balancing control. Asian Journal of Control, 24(3), 1304–1320. https://doi.org/10.1002/asjc.2586

    Article  Google Scholar 

  31. Singh, R., & Bhushan, B. (2021). Improving self-balancing and position tracking control for ball balancer application with discrete wavelet transform-based fuzzy logic controller. International Journal of Fuzzy Systems, 23, 27–41. https://doi.org/10.1007/s40815-020-00994-8

    Article  Google Scholar 

  32. Gonzalez Villarreal, O. J., Rossiter, J. A., & Tsourdos, A. (2022). An efficient condensing algorithm for fast closed loop dual-mode nonlinear model predictive control. IET Control Theory and Applications, 16(9), 872–888. https://doi.org/10.1049/cth2.12274

    Article  MathSciNet  Google Scholar 

  33. Roy, P., Das, A., & Roy, B. K. (2018). Cascaded fractional order sliding mode control for trajectory control of a ball and plate system. Transactions of the Institute of Measurement and Control, 40(3), 701–711. https://doi.org/10.1177/0142331216663826

  34. Ali, H. I., Jassim, H. M., & Hasan, A. F. (2019). Optimal nonlinear model reference controller design for ball and plate system. Arabian Journal for Science and Engineering, 44(8), 6757–6768. https://doi.org/10.1007/s13369-018-3616-1

    Article  Google Scholar 

  35. Mohammadi, A., & Ryu, J. C. (2020). Neural network-based PID compensation for nonlinear systems: Ball-on-plate example. International Journal of Dynamics and Control, 8(1), 178–188. https://doi.org/10.1007/s40435-018-0480-5

    Article  MathSciNet  Google Scholar 

  36. Yepez Ponce, D. F., & Montalvo Lopez, W. M. (2021). Development of a hybrid optimization strategy based on a bacterial foraging algorithm (BFA) and a particle swarming algorithm (PSO) to tune the PID controller of a ball and plate system. In XV Multidisciplinary International Congress on Science and Technology (pp. 15–29). Springer. https://doi.org/10.1007/978-3-031-08280-1_2

  37. Sharma, A. K., & Bhushan, B. (2023). Position control of a ball balancer system using particle swarm optimization, BAT and flower pollination algorithm. International Journal of Parallel, Emergent and Distributed Systems, 38(3), 213–228. https://doi.org/10.1080/17445760.2023.2190972

    Article  Google Scholar 

  38. 2 DOF ball balancer student workbook, 2DBB, Student Version, Quanser Inc, Canada

  39. Asuero, A. G., Sayago, A., & Gonzalez, A. G. (2006). The correlation coefficient: An overview. Critical Reviews in Analytical Chemistry, 36(1), 41–59. https://doi.org/10.1080/10408340500526766

    Article  Google Scholar 

  40. Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (pp. 69–73). IEEE. https://doi.org/10.1109/ICEC.1998.699146

  41. Zheng, Z., Sun, W., Chen, H., & Yeow, J. T. (2014). Integral sliding mode based optimal composite nonlinear feedback control for a class of systems. Control Theory and Technology, 12(2), 139–146. https://doi.org/10.1007/s11768-014-0022-4

    Article  MathSciNet  Google Scholar 

  42. Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58–73. https://doi.org/10.1109/4235.985692

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Mija.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, T.R.D., Mija, S.J. Mathematical modelling of ball and plate system with experimental and correlation function-based model validation. Control Theory Technol. (2024). https://doi.org/10.1007/s11768-024-00208-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11768-024-00208-8

Keywords

Navigation