Skip to main content
Log in

A hybrid data-driven and mechanism-based method for vehicle trajectory prediction

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

Ensuring the safe and efficient operation of self-driving vehicles relies heavily on accurately predicting their future trajectories. Existing approaches commonly employ an encoder–decoder neural network structure to enhance information extraction during the encoding phase. However, these methods often neglect the inclusion of road rule constraints during trajectory formulation in the decoding phase. This paper proposes a novel method that combines neural networks and rule-based constraints in the decoder stage to improve trajectory prediction accuracy while ensuring compliance with vehicle kinematics and road rules. The approach separates vehicle trajectories into lateral and longitudinal routes and utilizes conditional variational autoencoder (CVAE) to capture trajectory uncertainty. The evaluation results demonstrate a reduction of 32.4% and 27.6% in the average displacement error (ADE) for predicting the top five and top ten trajectories, respectively, compared to the baseline method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hou, L., Xin, L., Li, S. E., Cheng, B., & Wang, W. (2019). Interactive trajectory prediction of surrounding road users for autonomous driving using structural-lstm network. IEEE Transactions on Intelligent Transportation Systems, 21(11), 4615–4625.

    Article  Google Scholar 

  2. Xie, G., Gao, H., Qian, L., Huang, B., Li, K., & Wang, J. (2017). Vehicle trajectory prediction by integrating physics-and maneuver-based approaches using interactive multiple models. IEEE Transactions on Industrial Electronics, 65(7), 5999–6008.

    Article  Google Scholar 

  3. Altché, F., & de La Fortelle, A. (2017). An lstm network for highway trajectory prediction. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 353–359. IEEE

  4. Kim, H., Kim, D., Kim, G., Cho, J., & Huh, K. (2020). Multi-head attention based probabilistic vehicle trajectory prediction. In: 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 1720–1725. IEEE

  5. Li, J., Ma, H., Zhang, Z., Li, J., & Tomizuka, M. (2021). Spatio-temporal graph dual-attention network for multi-agent prediction and tracking. IEEE Transactions on Intelligent Transportation Systems, 23(8), 10556–10569.

    Article  Google Scholar 

  6. Deo, N., & Trivedi, M.M. (2020). Trajectory forecasts in unknown environments conditioned on grid-based plans. arXiv preprint arXiv:2001.00735

  7. Zyner, A., Worrall, S., & Nebot, E. (2019). Naturalistic driver intention and path prediction using recurrent neural networks. IEEE Transactions on Intelligent Transportation Systems, 21(4), 1584–1594.

    Article  Google Scholar 

  8. Karle, P., Geisslinger, M., Betz, J., & Lienkamp, M. (2022). Scenario understanding and motion prediction for autonomous vehicles-review and comparison. IEEE Transactions on Intelligent Transportation Systems, 23(10), 16962–16982.

  9. Huang, Y., Du, J., Yang, Z., Zhou, Z., Zhang, L., & Chen, H. (2022). A survey on trajectory-prediction methods for autonomous driving. IEEE Transactions on Intelligent Vehicles, 7(3), 652–674.

    Article  Google Scholar 

  10. Deo, N., & Trivedi, M.M. (2018). Multi-modal trajectory prediction of surrounding vehicles with maneuver based lstms. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1179–1184. IEEE

  11. Xin, L., Wang, P., Chan, C.-Y., Chen, J., Li, S.E., & Cheng, B. (2018). Intention-aware long horizon trajectory prediction of surrounding vehicles using dual lstm networks. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 1441–1446. IEEE

  12. Park, S.H., Kim, B., Kang, C.M., Chung, C.C., & Choi, J.W. (2018). Sequence-to-sequence prediction of vehicle trajectory via lstm encoder-decoder architecture. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1672–1678. IEEE

  13. Deo, N., & Trivedi, M.M. (2018). Convolutional social pooling for vehicle trajectory prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1468–1476.

  14. Phan-Minh, T., Grigore, E.C., Boulton, F.A., Beijbom, O., & Wolff, E.M. (2020). Covernet: Multimodal behavior prediction using trajectory sets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14074–14083.

  15. Liang, M., Yang, B., Hu, R., Chen, Y., Liao, R., Feng, S., & Urtasun, R. (2020). Learning lane graph representations for motion forecasting. In A. Vedaldi, H. Bischof, T. Brox, & J.-M. Frahm (Eds.), Computer Vision - ECCV 2020 (pp. 541–556). Cham: Springer.

    Chapter  Google Scholar 

  16. Yan, J., Peng, Z., Yin, H., Wang, J., Wang, X., Shen, Y., Stechele, W., & Cremers, D. (2020). Trajectory prediction for intelligent vehicles using spatial-attention mechanism. IET Intelligent Transport Systems, 14(13), 1855–1863.

    Article  Google Scholar 

  17. Gao, J., Sun, C., Zhao, H., Shen, Y., Anguelov, D., Li, C., & Schmid, C. (2020). Vectornet: Encoding hd maps and agent dynamics from vectorized representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11525–11533.

  18. Deo, N., Wolff, E., & Beijbom, O. (2022). Multimodal trajectory prediction conditioned on lane-graph traversals. In: Conference on Robot Learning, pp. 203–212.

  19. Liang, Y., & Zhao, Z. (2021). Nettraj: A network-based vehicle trajectory prediction model with directional representation and spatiotemporal attention mechanisms. IEEE Transactions on Intelligent Transportation Systems, 23(9), 14470–14481.

    Article  Google Scholar 

  20. Chai, Y., Sapp, B., Bansal, M., & Anguelov, D. (2019). Multipath: Multiple probabilistic anchor trajectory hypotheses for behavior prediction. arXiv preprint arXiv:1910.05449

  21. Cui, H., Radosavljevic, V., Chou, F.-C., Lin, T.-H., Nguyen, T., Huang, T.-K., Schneider, J., & Djuric, N. (2019). Multimodal trajectory predictions for autonomous driving using deep convolutional networks. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 2090–2096. IEEE

  22. Oh, G., & Peng, H. (2022). Cvae-h: Conditionalizing variational autoencoders via hypernetworks and trajectory forecasting for autonomous driving. arXiv preprint arXiv:2201.09874

  23. Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H., & Chandraker, M. (2017). Desire: Distant future prediction in dynamic scenes with interacting agents. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 336–345.

  24. Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Rezatofighi, H., & Savarese, S. (2019). Sophie: An attentive gan for predicting paths compliant to social and physical constraints. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1349–1358.

  25. Ivanovic, B., Leung, K., Schmerling, E., & Pavone, M. (2020). Multimodal deep generative models for trajectory prediction: A conditional variational autoencoder approach. IEEE Robotics and Automation Letters, 6(2), 295–302.

    Article  Google Scholar 

  26. Salzmann, T., Ivanovic, B., Chakravarty, P., & Pavone, M. (2020). Trajectron++: Dynamically-feasible trajectory forecasting with heterogeneous data. In: Computer Vision–ECCV 2020: 16th European Conference, pp. 683–700. Springer

  27. Bhattacharyya, A., Reino, D.O., Fritz, M., & Schiele, B. (2021). Euro-pvi: Pedestrian vehicle interactions in dense urban centers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6408–6417.

  28. Li, L., Yao, J., Wenliang, L., He, T., Xiao, T., Yan, J., Wipf, D., & Zhang, Z. (2021). Grin: Generative relation and intention network for multi-agent trajectory prediction. Advances in Neural Information Processing Systems, 34, 27107–27118.

    Google Scholar 

  29. Sun, L., Zhan, W., & Tomizuka, M. (2018). Probabilistic prediction of interactive driving behavior via hierarchical inverse reinforcement learning. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 2111–2117. IEEE

  30. Bingham, E., Chen, J.P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh, R., Szerlip, P., Horsfall, P., & Goodman, N.D. (2018). Pyro: Deep Universal Probabilistic Programming. Journal of Machine Learning Research, 20.

  31. Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A., Pan, Y., Baldan, G., & Beijbom, O. (2020). nuscenes: A multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631.

  32. Wang, C., Wang, Y., Xu, M., & Crandall, D. J. (2022). Stepwise goal-driven networks for trajectory prediction. IEEE Robotics and Automation Letters, 7(2), 2716–2723.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Zhang.

Additional information

This work was supported in part by the National Natural Science Foundation of China under Grant 52372393, 62003238, and in part by the DongfengTechnology Center (Research and Application of Next-Generation Low-Carbonntelligent Architecture Technology).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Xiao, X., Li, B. et al. A hybrid data-driven and mechanism-based method for vehicle trajectory prediction. Control Theory Technol. 21, 301–314 (2023). https://doi.org/10.1007/s11768-023-00170-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-023-00170-x

Keywords

Navigation